mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-07-04 15:41:24 +00:00
378 lines
14 KiB
Python
378 lines
14 KiB
Python
![]() |
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||
|
# Source for "Build a Large Language Model From Scratch"
|
||
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||
|
|
||
|
import os
|
||
|
from pathlib import Path
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
import tiktoken
|
||
|
from tiktoken.load import load_tiktoken_bpe
|
||
|
|
||
|
|
||
|
LLAMA32_CONFIG_1B = {
|
||
|
"vocab_size": 128_256, # Vocabulary size
|
||
|
"context_length": 8192, # Maximum context length to use (reduced to save memory)
|
||
|
"orig_context_length": 131_072, # Context length that was used to train the model
|
||
|
"emb_dim": 2048, # Embedding dimension
|
||
|
"n_heads": 32, # Number of attention heads
|
||
|
"n_layers": 16, # Number of layers
|
||
|
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
|
||
|
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
|
||
|
"rope_base": 500_000.0, # The base in RoPE's "theta"
|
||
|
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
|
||
|
"rope_freq": { # RoPE frequency scaling
|
||
|
"factor": 32.0,
|
||
|
"low_freq_factor": 1.0,
|
||
|
"high_freq_factor": 4.0,
|
||
|
"original_context_length": 8192,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
LLAMA32_CONFIG_3B = {
|
||
|
"vocab_size": 128_256, # Vocabulary size
|
||
|
"context_length": 8192, # Maximum context length to use (reduced to save memory)
|
||
|
"orig_context_length": 131_072, # Context length that was used to train the model
|
||
|
"emb_dim": 3072, # Embedding dimension
|
||
|
"n_heads": 24, # Number of attention heads
|
||
|
"n_layers": 28, # Number of layers
|
||
|
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
|
||
|
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
|
||
|
"rope_base": 500_000.0, # The base in RoPE's "theta"
|
||
|
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
|
||
|
"rope_freq": { # RoPE frequency scaling
|
||
|
"factor": 32.0,
|
||
|
"low_freq_factor": 1.0,
|
||
|
"high_freq_factor": 4.0,
|
||
|
"original_context_length": 8192,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
class Llama3Model(nn.Module):
|
||
|
def __init__(self, cfg):
|
||
|
super().__init__()
|
||
|
|
||
|
# Main model parameters
|
||
|
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
|
||
|
|
||
|
self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin`
|
||
|
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
|
||
|
)
|
||
|
|
||
|
self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
||
|
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
|
||
|
|
||
|
# Reusuable utilities
|
||
|
self.register_buffer("mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool())
|
||
|
|
||
|
if cfg["orig_context_length"] != cfg["context_length"]:
|
||
|
cfg["rope_base"] = rescale_theta(
|
||
|
cfg["rope_base"],
|
||
|
cfg["orig_context_length"],
|
||
|
cfg["context_length"]
|
||
|
)
|
||
|
cos, sin = compute_rope_params(
|
||
|
head_dim=cfg["emb_dim"] // cfg["n_heads"],
|
||
|
theta_base=cfg["rope_base"],
|
||
|
context_length=cfg["context_length"],
|
||
|
freq_config=cfg["rope_freq"]
|
||
|
)
|
||
|
self.register_buffer("cos", cos, persistent=False)
|
||
|
self.register_buffer("sin", sin, persistent=False)
|
||
|
self.cfg = cfg
|
||
|
|
||
|
def forward(self, in_idx):
|
||
|
# Forward pass
|
||
|
tok_embeds = self.tok_emb(in_idx)
|
||
|
x = tok_embeds
|
||
|
|
||
|
for block in self.trf_blocks:
|
||
|
x = block(x, self.mask, self.cos, self.sin)
|
||
|
x = self.final_norm(x)
|
||
|
logits = self.out_head(x.to(self.cfg["dtype"]))
|
||
|
return logits
|
||
|
|
||
|
|
||
|
class TransformerBlock(nn.Module):
|
||
|
def __init__(self, cfg):
|
||
|
super().__init__()
|
||
|
self.att = GroupedQueryAttention(
|
||
|
d_in=cfg["emb_dim"],
|
||
|
d_out=cfg["emb_dim"],
|
||
|
num_heads=cfg["n_heads"],
|
||
|
num_kv_groups=cfg["n_kv_groups"],
|
||
|
dtype=cfg["dtype"]
|
||
|
)
|
||
|
self.ff = FeedForward(cfg)
|
||
|
self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
||
|
self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
||
|
|
||
|
def forward(self, x, mask, cos, sin):
|
||
|
# Shortcut connection for attention block
|
||
|
shortcut = x
|
||
|
x = self.norm1(x)
|
||
|
x = self.att(x, mask, cos, sin) # Shape [batch_size, num_tokens, emb_size]
|
||
|
x = x + shortcut # Add the original input back
|
||
|
|
||
|
# Shortcut connection for feed-forward block
|
||
|
shortcut = x
|
||
|
x = self.norm2(x)
|
||
|
x = self.ff(x)
|
||
|
x = x + shortcut # Add the original input back
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
class FeedForward(nn.Module):
|
||
|
def __init__(self, cfg):
|
||
|
super().__init__()
|
||
|
self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
|
||
|
self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
|
||
|
self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x_fc1 = self.fc1(x)
|
||
|
x_fc2 = self.fc2(x)
|
||
|
x = nn.functional.silu(x_fc1) * x_fc2
|
||
|
return self.fc3(x)
|
||
|
|
||
|
|
||
|
class GroupedQueryAttention(nn.Module):
|
||
|
def __init__(
|
||
|
self, d_in, d_out, num_heads,
|
||
|
num_kv_groups,
|
||
|
dtype=None
|
||
|
):
|
||
|
super().__init__()
|
||
|
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
|
||
|
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
|
||
|
|
||
|
self.d_out = d_out
|
||
|
self.num_heads = num_heads
|
||
|
self.head_dim = d_out // num_heads
|
||
|
|
||
|
self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
|
||
|
self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
|
||
|
self.num_kv_groups = num_kv_groups
|
||
|
self.group_size = num_heads // num_kv_groups
|
||
|
|
||
|
self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)
|
||
|
self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)
|
||
|
|
||
|
def forward(self, x, mask, cos, sin):
|
||
|
b, num_tokens, d_in = x.shape
|
||
|
|
||
|
queries = self.W_query(x) # Shape: (b, num_tokens, d_out)
|
||
|
keys = self.W_key(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
|
||
|
values = self.W_value(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
|
||
|
|
||
|
# Reshape queries, keys, and values
|
||
|
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
||
|
keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim)
|
||
|
values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim)
|
||
|
|
||
|
# Transpose keys, values, and queries
|
||
|
keys = keys.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
|
||
|
values = values.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
|
||
|
queries = queries.transpose(1, 2) # Shape: (b, num_query_groups, num_tokens, head_dim)
|
||
|
|
||
|
# Apply RoPE
|
||
|
keys = apply_rope(keys, cos, sin)
|
||
|
queries = apply_rope(queries, cos, sin)
|
||
|
|
||
|
# Expand keys and values to match the number of heads
|
||
|
# Shape: (b, num_heads, num_tokens, head_dim)
|
||
|
keys = keys.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
|
||
|
values = values.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
|
||
|
# For example, before repeat_interleave along dim=1 (query groups):
|
||
|
# [K1, K2]
|
||
|
# After repeat_interleave (each query group is repeated group_size times):
|
||
|
# [K1, K1, K2, K2]
|
||
|
# If we used regular repeat instead of repeat_interleave, we'd get:
|
||
|
# [K1, K2, K1, K2]
|
||
|
|
||
|
# Compute scaled dot-product attention (aka self-attention) with a causal mask
|
||
|
# Shape: (b, num_heads, num_tokens, num_tokens)
|
||
|
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
||
|
|
||
|
# Use the mask to fill attention scores
|
||
|
attn_scores = attn_scores.masked_fill(mask[:num_tokens, :num_tokens], -torch.inf)
|
||
|
|
||
|
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
||
|
assert keys.shape[-1] == self.head_dim
|
||
|
|
||
|
# Shape: (b, num_tokens, num_heads, head_dim)
|
||
|
context_vec = (attn_weights @ values).transpose(1, 2)
|
||
|
|
||
|
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||
|
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
|
||
|
context_vec = self.out_proj(context_vec) # optional projection
|
||
|
|
||
|
return context_vec
|
||
|
|
||
|
|
||
|
def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, freq_config=None, dtype=torch.float32):
|
||
|
assert head_dim % 2 == 0, "Embedding dimension must be even"
|
||
|
|
||
|
# Compute the inverse frequencies
|
||
|
inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim))
|
||
|
|
||
|
# Frequency adjustments
|
||
|
if freq_config is not None:
|
||
|
low_freq_wavelen = freq_config["original_context_length"] / freq_config["low_freq_factor"]
|
||
|
high_freq_wavelen = freq_config["original_context_length"] / freq_config["high_freq_factor"]
|
||
|
|
||
|
wavelen = 2 * torch.pi / inv_freq
|
||
|
|
||
|
inv_freq_llama = torch.where(
|
||
|
wavelen > low_freq_wavelen, inv_freq / freq_config["factor"], inv_freq
|
||
|
)
|
||
|
|
||
|
smooth_factor = (freq_config["original_context_length"] / wavelen - freq_config["low_freq_factor"]) / (
|
||
|
freq_config["high_freq_factor"] - freq_config["low_freq_factor"]
|
||
|
)
|
||
|
|
||
|
smoothed_inv_freq = (
|
||
|
(1 - smooth_factor) * (inv_freq / freq_config["factor"]) + smooth_factor * inv_freq
|
||
|
)
|
||
|
|
||
|
is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen)
|
||
|
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
|
||
|
inv_freq = inv_freq_llama
|
||
|
|
||
|
# Generate position indices
|
||
|
positions = torch.arange(context_length, dtype=dtype)
|
||
|
|
||
|
# Compute the angles
|
||
|
angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2)
|
||
|
|
||
|
# Expand angles to match the head_dim
|
||
|
angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim)
|
||
|
|
||
|
# Precompute sine and cosine
|
||
|
cos = torch.cos(angles)
|
||
|
sin = torch.sin(angles)
|
||
|
|
||
|
return cos, sin
|
||
|
|
||
|
|
||
|
def apply_rope(x, cos, sin):
|
||
|
# x: (batch_size, num_heads, seq_len, head_dim)
|
||
|
batch_size, num_heads, seq_len, head_dim = x.shape
|
||
|
assert head_dim % 2 == 0, "Head dimension must be even"
|
||
|
|
||
|
# Split x into first half and second half
|
||
|
x1 = x[..., : head_dim // 2] # First half
|
||
|
x2 = x[..., head_dim // 2:] # Second half
|
||
|
|
||
|
# Adjust sin and cos shapes
|
||
|
cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim)
|
||
|
sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0)
|
||
|
|
||
|
# Apply the rotary transformation
|
||
|
rotated = torch.cat((-x2, x1), dim=-1)
|
||
|
x_rotated = (x * cos) + (rotated * sin)
|
||
|
|
||
|
# It's ok to use lower-precision after applying cos and sin rotation
|
||
|
return x_rotated.to(dtype=x.dtype)
|
||
|
|
||
|
|
||
|
def rescale_theta(theta_old, context_length_old, context_length_new):
|
||
|
scaling_factor = context_length_new / context_length_old
|
||
|
theta_new = theta_old * scaling_factor
|
||
|
return theta_new
|
||
|
|
||
|
|
||
|
##########################################
|
||
|
# Tokenizer
|
||
|
##########################################
|
||
|
|
||
|
|
||
|
class Llama3Tokenizer:
|
||
|
def __init__(self, model_path):
|
||
|
assert os.path.isfile(model_path), f"Model file {model_path} not found"
|
||
|
mergeable_ranks = load_tiktoken_bpe(model_path)
|
||
|
|
||
|
self.special_tokens = {
|
||
|
"<|begin_of_text|>": 128000,
|
||
|
"<|end_of_text|>": 128001,
|
||
|
"<|start_header_id|>": 128006,
|
||
|
"<|end_header_id|>": 128007,
|
||
|
"<|eot_id|>": 128009,
|
||
|
}
|
||
|
self.special_tokens.update({
|
||
|
f"<|reserved_{i}|>": 128002 + i for i in range(256) if (128002 + i) not in self.special_tokens.values()
|
||
|
})
|
||
|
|
||
|
self.model = tiktoken.Encoding(
|
||
|
name=Path(model_path).name,
|
||
|
pat_str=r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+",
|
||
|
mergeable_ranks=mergeable_ranks,
|
||
|
special_tokens=self.special_tokens
|
||
|
)
|
||
|
|
||
|
def encode(self, text, bos=False, eos=False, allowed_special=set(), disallowed_special=()):
|
||
|
if bos:
|
||
|
tokens = [self.special_tokens["<|begin_of_text|>"]]
|
||
|
else:
|
||
|
tokens = []
|
||
|
|
||
|
tokens += self.model.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special)
|
||
|
|
||
|
if eos:
|
||
|
tokens.append(self.special_tokens["<|end_of_text|>"])
|
||
|
return tokens
|
||
|
|
||
|
def decode(self, tokens):
|
||
|
return self.model.decode(tokens)
|
||
|
|
||
|
|
||
|
class ChatFormat:
|
||
|
def __init__(self, tokenizer):
|
||
|
self.tokenizer = tokenizer
|
||
|
|
||
|
def encode_header(self, message):
|
||
|
tokens = []
|
||
|
tokens.append(self.tokenizer.special_tokens["<|start_header_id|>"])
|
||
|
tokens.extend(self.tokenizer.encode(message["role"], bos=False, eos=False))
|
||
|
tokens.append(self.tokenizer.special_tokens["<|end_header_id|>"])
|
||
|
tokens.extend(self.tokenizer.encode("\n\n", bos=False, eos=False))
|
||
|
return tokens
|
||
|
|
||
|
def encode(self, text, allowed_special=None):
|
||
|
message = {
|
||
|
"role": "user",
|
||
|
"content": text
|
||
|
}
|
||
|
|
||
|
tokens = self.encode_header(message)
|
||
|
tokens.extend(
|
||
|
self.tokenizer.encode(
|
||
|
message["content"].strip(),
|
||
|
bos=False,
|
||
|
eos=False,
|
||
|
allowed_special=allowed_special
|
||
|
)
|
||
|
)
|
||
|
tokens.append(self.tokenizer.special_tokens["<|eot_id|>"])
|
||
|
return tokens
|
||
|
|
||
|
def decode(self, token_ids):
|
||
|
return self.tokenizer.decode(token_ids)
|
||
|
|
||
|
|
||
|
def clean_text(text, header_end="assistant<|end_header_id|>\n\n"):
|
||
|
# Find the index of the first occurrence of "<|end_header_id|>"
|
||
|
index = text.find(header_end)
|
||
|
|
||
|
if index != -1:
|
||
|
# Return the substring starting after "<|end_header_id|>"
|
||
|
return text[index + len(header_end):].strip() # Strip removes leading/trailing whitespace
|
||
|
else:
|
||
|
# If the token is not found, return the original text
|
||
|
return text
|