2023-10-15 17:15:20 -05:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"id": "6f678e62-7bcb-4405-86ae-dce94f494303",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"# The Main Data Loading Pipeline Summarized"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"id": "070000fc-a7b7-4c56-a2c0-a938d413a790",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"The complete chapter code is located in [ch02.ipynb](./ch02.ipynb).\n",
|
|
|
|
"\n",
|
|
|
|
"This notebook contains the main takeaway, the data loading pipeline without the intermediate steps."
|
|
|
|
]
|
|
|
|
},
|
2024-01-01 19:41:18 +01:00
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2024-01-17 07:50:57 -06:00
|
|
|
"execution_count": 1,
|
2024-01-01 19:41:18 +01:00
|
|
|
"id": "93804da5-372b-45ff-9ef4-8398ba1dd78e",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
2024-01-17 07:50:57 -06:00
|
|
|
"torch version: 2.1.0\n",
|
2024-01-01 19:41:18 +01:00
|
|
|
"tiktoken version: 0.5.1\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"from importlib.metadata import version\n",
|
|
|
|
"\n",
|
|
|
|
"import tiktoken\n",
|
|
|
|
"import torch\n",
|
|
|
|
"\n",
|
|
|
|
"print(\"torch version:\", version(\"torch\"))\n",
|
|
|
|
"print(\"tiktoken version:\", version(\"tiktoken\"))"
|
|
|
|
]
|
|
|
|
},
|
2023-10-15 17:15:20 -05:00
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-12-28 19:05:06 +01:00
|
|
|
"execution_count": 2,
|
2023-10-15 17:15:20 -05:00
|
|
|
"id": "0ed4b7db-3b47-4fd3-a4a6-5f4ed5dd166e",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"import tiktoken\n",
|
|
|
|
"import torch\n",
|
|
|
|
"from torch.utils.data import Dataset, DataLoader\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
|
|
|
"class GPTDatasetV1(Dataset):\n",
|
|
|
|
" def __init__(self, txt, tokenizer, max_length, stride):\n",
|
|
|
|
" self.tokenizer = tokenizer\n",
|
|
|
|
" self.input_ids = []\n",
|
|
|
|
" self.target_ids = []\n",
|
|
|
|
"\n",
|
|
|
|
" # Tokenize the entire text\n",
|
|
|
|
" token_ids = tokenizer.encode(txt)\n",
|
|
|
|
"\n",
|
|
|
|
" # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
|
|
|
|
" for i in range(0, len(token_ids) - max_length, stride):\n",
|
|
|
|
" input_chunk = token_ids[i:i + max_length]\n",
|
|
|
|
" target_chunk = token_ids[i + 1: i + max_length + 1]\n",
|
|
|
|
" self.input_ids.append(torch.tensor(input_chunk))\n",
|
|
|
|
" self.target_ids.append(torch.tensor(target_chunk))\n",
|
|
|
|
"\n",
|
|
|
|
" def __len__(self):\n",
|
|
|
|
" return len(self.input_ids)\n",
|
|
|
|
"\n",
|
|
|
|
" def __getitem__(self, idx):\n",
|
|
|
|
" return self.input_ids[idx], self.target_ids[idx]\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
2024-01-17 07:50:57 -06:00
|
|
|
"def create_dataloader(txt, batch_size=4, max_length=256, stride=128, shuffle=True):\n",
|
2023-10-15 17:15:20 -05:00
|
|
|
" # Initialize the tokenizer\n",
|
|
|
|
" tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
|
|
|
|
"\n",
|
|
|
|
" # Create dataset\n",
|
|
|
|
" dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)\n",
|
|
|
|
"\n",
|
|
|
|
" # Create dataloader\n",
|
2024-01-17 07:50:57 -06:00
|
|
|
" dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)\n",
|
2023-10-15 17:15:20 -05:00
|
|
|
"\n",
|
|
|
|
" return dataloader\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
2024-01-17 07:50:57 -06:00
|
|
|
"\n",
|
2023-10-15 17:15:20 -05:00
|
|
|
"with open(\"the-verdict.txt\", \"r\", encoding=\"utf-8\") as f:\n",
|
|
|
|
" raw_text = f.read()\n",
|
|
|
|
"\n",
|
|
|
|
"tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
|
|
|
|
"encoded_text = tokenizer.encode(raw_text)\n",
|
|
|
|
"\n",
|
|
|
|
"vocab_size = 50257\n",
|
|
|
|
"output_dim = 256\n",
|
2023-12-28 19:05:06 +01:00
|
|
|
"block_size = 1024\n",
|
|
|
|
"\n",
|
|
|
|
"\n",
|
2023-10-15 17:15:20 -05:00
|
|
|
"token_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)\n",
|
2023-12-28 19:05:06 +01:00
|
|
|
"pos_embedding_layer = torch.nn.Embedding(block_size, output_dim)\n",
|
2023-10-15 17:15:20 -05:00
|
|
|
"\n",
|
|
|
|
"max_length = 4\n",
|
|
|
|
"dataloader = create_dataloader(raw_text, batch_size=8, max_length=max_length, stride=5)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-12-28 19:05:06 +01:00
|
|
|
"execution_count": 3,
|
2023-10-15 17:15:20 -05:00
|
|
|
"id": "664397bc-6daa-4b88-90aa-e8fc1fbd5846",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"for batch in dataloader:\n",
|
|
|
|
" x, y = batch\n",
|
|
|
|
"\n",
|
|
|
|
" token_embeddings = token_embedding_layer(x)\n",
|
|
|
|
" pos_embeddings = pos_embedding_layer(torch.arange(max_length))\n",
|
|
|
|
"\n",
|
|
|
|
" input_embeddings = token_embeddings + pos_embeddings\n",
|
|
|
|
"\n",
|
|
|
|
" break"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-12-28 19:05:06 +01:00
|
|
|
"execution_count": 4,
|
2023-10-15 17:15:20 -05:00
|
|
|
"id": "d3664332-e6bb-447e-8b96-203aafde8b24",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"torch.Size([8, 4, 256])\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"print(input_embeddings.shape)"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"kernelspec": {
|
|
|
|
"display_name": "Python 3 (ipykernel)",
|
|
|
|
"language": "python",
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"language_info": {
|
|
|
|
"codemirror_mode": {
|
|
|
|
"name": "ipython",
|
|
|
|
"version": 3
|
|
|
|
},
|
|
|
|
"file_extension": ".py",
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
"name": "python",
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
"pygments_lexer": "ipython3",
|
2024-01-17 07:50:57 -06:00
|
|
|
"version": "3.10.12"
|
2023-10-15 17:15:20 -05:00
|
|
|
}
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
|
|
|
"nbformat_minor": 5
|
|
|
|
}
|