LLMs-from-scratch/ch07/01_main-chapter-code/exercise_experiments.py

563 lines
19 KiB
Python
Raw Normal View History

2024-06-22 08:30:45 -05:00
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
#
# Code to run the exercises; see exercise-solutions.ipynb for more information
from functools import partial
from importlib.metadata import version
import json
import math
2024-06-22 08:30:45 -05:00
import os
import re
import time
import urllib
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
2024-06-22 08:30:45 -05:00
import tiktoken
import torch
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
# Import from local files in this folder
from gpt_download import download_and_load_gpt2
from previous_chapters import (
calc_loss_loader,
generate,
GPTModel,
load_weights_into_gpt,
text_to_token_ids,
train_model_simple,
token_ids_to_text
)
class InstructionDataset(Dataset):
def __init__(self, data, tokenizer):
self.data = data
# Pre-tokenize texts
self.encoded_texts = []
for entry in data:
instruction_plus_input = format_input(entry)
response_text = f"\n\n### Response:\n{entry['output']}"
full_text = instruction_plus_input + response_text
self.encoded_texts.append(
tokenizer.encode(full_text)
)
def __getitem__(self, index):
return self.encoded_texts[index]
def __len__(self):
return len(self.data)
class InstructionDatasetWithMasking(Dataset):
def __init__(self, data, tokenizer):
self.data = data
# New: Separate list for instruction lengths
self.instruction_lengths = []
self.encoded_texts = []
for entry in data:
instruction_plus_input = format_input(entry)
response_text = f"\n\n### Response:\n{entry['output']}"
full_text = instruction_plus_input + response_text
self.encoded_texts.append(
tokenizer.encode(full_text)
)
# New: collect instruction lengths
instruction_length = len(tokenizer.encode(instruction_plus_input))
self.instruction_lengths.append(instruction_length)
def __getitem__(self, index):
# New: return both instruction lengths and texts separately
return self.instruction_lengths[index], self.encoded_texts[index]
def __len__(self):
return len(self.data)
class InstructionDatasetPhi(Dataset):
def __init__(self, data, tokenizer):
self.data = data
# Pre-tokenize texts
self.encoded_texts = []
for entry in data:
###################################################################
# NEW: Use `format_input_phi` and adjust the response text template
instruction_plus_input = format_input_phi(entry)
response_text = f"\n<|assistant|>:\n{entry['output']}"
###################################################################
full_text = instruction_plus_input + response_text
self.encoded_texts.append(
tokenizer.encode(full_text)
)
def __getitem__(self, index):
return self.encoded_texts[index]
def __len__(self):
return len(self.data)
class LinearWithLoRA(torch.nn.Module):
def __init__(self, linear, rank, alpha):
super().__init__()
self.linear = linear
self.lora = LoRALayer(
linear.in_features, linear.out_features, rank, alpha
)
def forward(self, x):
return self.linear(x) + self.lora(x)
class LoRALayer(torch.nn.Module):
def __init__(self, in_dim, out_dim, rank, alpha):
super().__init__()
self.A = torch.nn.Parameter(torch.empty(in_dim, rank))
torch.nn.init.kaiming_uniform_(self.A, a=math.sqrt(5)) # similar to standard weight initialization
self.B = torch.nn.Parameter(torch.zeros(rank, out_dim))
self.alpha = alpha
def forward(self, x):
x = self.alpha * (x @ self.A @ self.B)
return x
def replace_linear_with_lora(model, rank, alpha):
for name, module in model.named_children():
if isinstance(module, torch.nn.Linear):
# Replace the Linear layer with LinearWithLoRA
setattr(model, name, LinearWithLoRA(module, rank, alpha))
else:
# Recursively apply the same function to child modules
replace_linear_with_lora(module, rank, alpha)
2024-06-22 08:30:45 -05:00
def custom_collate_fn(
batch,
pad_token_id=50256,
ignore_index=-100,
allowed_max_length=None,
device="cpu"
):
# Find the longest sequence in the batch
batch_max_length = max(len(item)+1 for item in batch)
# Pad and prepare inputs and targets
inputs_lst, targets_lst = [], []
for item in batch:
new_item = item.copy()
# Add an <|endoftext|> token
new_item += [pad_token_id]
# Pad sequences to max_length
padded = new_item + [pad_token_id] * (batch_max_length - len(new_item))
inputs = torch.tensor(padded[:-1]) # Truncate the last token for inputs
targets = torch.tensor(padded[1:]) # Shift +1 to the right for targets
# New: Replace all but the first padding tokens in targets by ignore_index
mask = targets == pad_token_id
indices = torch.nonzero(mask).squeeze()
if indices.numel() > 1:
targets[indices[1:]] = ignore_index
# New: Optionally truncate to maximum sequence length
if allowed_max_length is not None:
inputs = inputs[:allowed_max_length]
targets = targets[:allowed_max_length]
inputs_lst.append(inputs)
targets_lst.append(targets)
# Convert list of inputs and targets to tensors and transfer to target device
inputs_tensor = torch.stack(inputs_lst).to(device)
targets_tensor = torch.stack(targets_lst).to(device)
return inputs_tensor, targets_tensor
def custom_collate_with_masking_fn(
batch,
pad_token_id=50256,
ignore_index=-100,
allowed_max_length=None,
device="cpu"
):
# Find the longest sequence in the batch
batch_max_length = max(len(item)+1 for instruction_length, item in batch) # New: batch is now a tuple
# Pad and prepare inputs and targets
inputs_lst, targets_lst = [], []
for instruction_length, item in batch: # New: batch is now a tuple
new_item = item.copy()
# Add an <|endoftext|> token
new_item += [pad_token_id]
# Pad sequences to max_length
padded = new_item + [pad_token_id] * (batch_max_length - len(new_item))
inputs = torch.tensor(padded[:-1]) # Truncate the last token for inputs
targets = torch.tensor(padded[1:]) # Shift +1 to the right for targets
# Replace all but the first padding tokens in targets by ignore_index
mask = targets == pad_token_id
indices = torch.nonzero(mask).squeeze()
if indices.numel() > 1:
targets[indices[1:]] = ignore_index
# New: Mask all input and instruction tokens in the targets
targets[:instruction_length-1] = -100
# Optionally truncate to maximum sequence length
if allowed_max_length is not None:
inputs = inputs[:allowed_max_length]
targets = targets[:allowed_max_length]
inputs_lst.append(inputs)
targets_lst.append(targets)
# Convert list of inputs and targets to tensors and transfer to target device
inputs_tensor = torch.stack(inputs_lst).to(device)
targets_tensor = torch.stack(targets_lst).to(device)
return inputs_tensor, targets_tensor
def download_and_load_file(file_path, url):
if not os.path.exists(file_path):
with urllib.request.urlopen(url) as response:
text_data = response.read().decode("utf-8")
with open(file_path, "w", encoding="utf-8") as file:
file.write(text_data)
else:
with open(file_path, "r", encoding="utf-8") as file:
text_data = file.read()
with open(file_path, "r") as file:
data = json.load(file)
return data
def format_input_phi(entry):
instruction_text = (
f"<|user|>\n{entry['instruction']}"
)
input_text = f"\n{entry['input']}" if entry["input"] else ""
return instruction_text + input_text
def format_input(entry):
instruction_text = (
f"Below is an instruction that describes a task. "
f"Write a response that appropriately completes the request."
f"\n\n### Instruction:\n{entry['instruction']}"
)
input_text = f"\n\n### Input:\n{entry['input']}" if entry["input"] else ""
return instruction_text + input_text
def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses, plot_name):
fig, ax1 = plt.subplots(figsize=(12, 6))
# Plot training and validation loss against epochs
ax1.plot(epochs_seen, train_losses, label="Training loss")
ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss")
ax1.set_xlabel("Epochs")
ax1.set_ylabel("Loss")
ax1.legend(loc="upper right")
ax1.xaxis.set_major_locator(MaxNLocator(integer=True)) # only show integer labels on x-axis
2024-06-22 08:30:45 -05:00
# Create a second x-axis for tokens seen
ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis
ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks
ax2.set_xlabel("Tokens seen")
fig.tight_layout() # Adjust layout to make room
print(f"Plot saved as {plot_name}")
plt.savefig(plot_name)
# plt.show()
def main(mask_instructions=False, alpaca52k=False, phi3_prompt=False, lora=False):
2024-06-22 08:30:45 -05:00
#######################################
# Print package versions
#######################################
print()
pkgs = [
"matplotlib", # Plotting library
"tiktoken", # Tokenizer
"torch", # Deep learning library
"tqdm", # Progress bar
"tensorflow", # For OpenAI's pretrained weights
]
for p in pkgs:
print(f"{p} version: {version(p)}")
print(50*"-")
#######################################
# Download and prepare dataset
#######################################
file_path = "instruction-data.json"
if alpaca52k:
url = "https://raw.githubusercontent.com/tatsu-lab/stanford_alpaca/main/alpaca_data.json"
else:
url = "https://raw.githubusercontent.com/rasbt/LLMs-from-scratch/main/ch07/01_main-chapter-code/instruction-data.json"
data = download_and_load_file(file_path, url)
train_portion = int(len(data) * 0.85) # 85% for training
test_portion = int(len(data) * 0.1) # 10% for testing
train_data = data[:train_portion]
test_data = data[train_portion:train_portion + test_portion]
val_data = data[train_portion + test_portion:]
print("Training set length:", len(train_data))
print("Validation set length:", len(val_data))
print("Test set length:", len(test_data))
print(50*"-")
tokenizer = tiktoken.get_encoding("gpt2")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Device:", device)
print(50*"-")
if alpaca52k:
allowed_max_length = 512
else:
allowed_max_length = 1024
if mask_instructions and phi3_prompt:
raise ValueError("Simultaneous support for instruction masking and the Phi-3 prompt template has not been implemented, yet.")
if mask_instructions:
customized_collate_fn = partial(custom_collate_with_masking_fn, device=device, allowed_max_length=allowed_max_length)
CustomDataset = InstructionDatasetWithMasking
elif phi3_prompt:
customized_collate_fn = partial(custom_collate_fn, device=device, allowed_max_length=allowed_max_length)
CustomDataset = InstructionDatasetPhi
else:
customized_collate_fn = partial(custom_collate_fn, device=device, allowed_max_length=allowed_max_length)
CustomDataset = InstructionDataset
num_workers = 0
if alpaca52k:
batch_size = 4
else:
batch_size = 8
torch.manual_seed(123)
train_dataset = CustomDataset(train_data, tokenizer)
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
collate_fn=customized_collate_fn,
shuffle=True,
drop_last=True,
num_workers=num_workers
)
val_dataset = CustomDataset(val_data, tokenizer)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
collate_fn=customized_collate_fn,
shuffle=False,
drop_last=False,
num_workers=num_workers
)
#######################################
# Load pretrained model
#######################################
BASE_CONFIG = {
"vocab_size": 50257, # Vocabulary size
"context_length": 1024, # Context length
"drop_rate": 0.0, # Dropout rate
"qkv_bias": True # Query-key-value bias
}
model_configs = {
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
}
CHOOSE_MODEL = "gpt2-medium (355M)"
BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
model = GPTModel(BASE_CONFIG)
load_weights_into_gpt(model, params)
model.eval()
model.to(device)
print("Loaded model:", CHOOSE_MODEL)
print(50*"-")
if lora:
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total trainable parameters before: {total_params:,}")
for param in model.parameters():
param.requires_grad = False
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total trainable parameters after: {total_params:,}")
replace_linear_with_lora(model, rank=16, alpha=16)
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total trainable LoRA parameters: {total_params:,}")
model.to(device)
2024-06-22 08:30:45 -05:00
#######################################
# Finetuning the model
#######################################
print("Initial losses")
with torch.no_grad():
train_loss = calc_loss_loader(train_loader, model, device, num_batches=5)
val_loss = calc_loss_loader(val_loader, model, device, num_batches=5)
print(" Training loss:", train_loss)
print(" Validation loss:", val_loss)
start_time = time.time()
num_epochs = 2
optimizer = torch.optim.AdamW(model.parameters(), lr=0.00005, weight_decay=0.1)
torch.manual_seed(123)
start_context = format_input_phi(val_data[0]) if phi3_prompt else format_input(val_data[0])
train_losses, val_losses, tokens_seen = train_model_simple(
model, train_loader, val_loader, optimizer, device,
num_epochs=num_epochs, eval_freq=5, eval_iter=5,
start_context=start_context, tokenizer=tokenizer
)
end_time = time.time()
execution_time_minutes = (end_time - start_time) / 60
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
epochs_tensor = torch.linspace(0, num_epochs, len(train_losses))
plot_name = "loss-plot.pdf"
if mask_instructions:
plot_name = plot_name.replace(".pdf", "-mask-instructions.pdf")
if alpaca52k:
plot_name = plot_name.replace(".pdf", "-alpaca52k.pdf")
if phi3_prompt:
plot_name = plot_name.replace(".pdf", "-phi3-prompt.pdf")
if lora:
plot_name = plot_name.replace(".pdf", "-lora.pdf")
if not any([mask_instructions, alpaca52k, phi3_prompt, lora]):
2024-06-22 08:30:45 -05:00
plot_name = plot_name.replace(".pdf", "-baseline.pdf")
plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses, plot_name)
print(50*"-")
#######################################
# Saving results
#######################################
print("Generating responses")
for i, entry in tqdm(enumerate(test_data), total=len(test_data)):
input_text = format_input_phi(entry) if phi3_prompt else format_input(entry)
token_ids = generate(
model=model,
idx=text_to_token_ids(input_text, tokenizer).to(device),
max_new_tokens=256,
context_size=BASE_CONFIG["context_length"],
eos_id=50256
)
generated_text = token_ids_to_text(token_ids, tokenizer)
if phi3_prompt:
response_text = generated_text[len(input_text):].replace("<|assistant|>:", "").strip()
else:
response_text = generated_text[len(input_text):].replace("### Response:", "").strip()
test_data[i]["model_response"] = response_text
test_data_path = "instruction-data-with-response.json"
file_name = f"{re.sub(r'[ ()]', '', CHOOSE_MODEL) }-sft.pth"
if mask_instructions:
test_data_path = test_data_path.replace(".json", "-mask-instructions.json")
file_name = file_name.replace(".pth", "-mask-instructions.pth")
if alpaca52k:
test_data_path = test_data_path.replace(".json", "-alpaca52k.json")
file_name = file_name.replace(".pth", "-alpaca52k.pth")
if phi3_prompt:
test_data_path = test_data_path.replace(".json", "-phi3-prompt.json")
file_name = file_name.replace(".pth", "-phi3-prompt.pth")
if lora:
test_data_path = test_data_path.replace(".json", "-lora.json")
file_name = file_name.replace(".pth", "-lora.pth")
if not any([mask_instructions, alpaca52k, phi3_prompt, lora]):
2024-06-22 08:30:45 -05:00
test_data_path = test_data_path.replace(".json", "-baseline.json")
file_name = file_name.replace(".pth", "-baseline.pth")
with open(test_data_path, "w") as file:
json.dump(test_data, file, indent=4) # "indent" for pretty-printing
print(f"Responses saved as {test_data_path}")
torch.save(model.state_dict(), file_name)
print(f"Model saved as {file_name}")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description="Instruction finetune a GPT model"
)
options = {"baseline", "mask_instructions", "alpaca_52k", "phi3_prompt", "lora"}
2024-06-22 08:30:45 -05:00
parser.add_argument(
"--exercise_solution",
type=str,
default="last_block",
help=(
f"Which experiment to run. Options: {options}."
)
)
args = parser.parse_args()
if args.exercise_solution == "baseline":
main()
elif args.exercise_solution == "mask_instructions":
main(mask_instructions=True)
elif args.exercise_solution == "alpaca_52k":
main(alpaca52k=True)
elif args.exercise_solution == "phi3_prompt":
main(phi3_prompt=True)
elif args.exercise_solution == "lora":
main(lora=True)
2024-06-22 08:30:45 -05:00
else:
raise ValueError(f"{args.exercise_solution} is not a valid --args.exercise_solution option. Options: {options}")