278 lines
7.9 KiB
Plaintext
Raw Normal View History

{
"cells": [
2024-05-12 09:22:42 -05:00
{
"cell_type": "markdown",
2024-05-24 07:20:37 -05:00
"id": "8968a681-2db1-4840-bb73-7d6c95986825",
"metadata": {},
"source": [
"<table style=\"width:100%\">\n",
"<tr>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<font size=\"2\">\n",
"Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
"<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
"</font>\n",
"</td>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
"</td>\n",
"</tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
2024-05-12 09:22:42 -05:00
"id": "8b6e1cdd-b14e-4368-bdbb-9bf7ab821791",
"metadata": {},
"source": [
"# Scikit-learn Logistic Regression Model"
]
},
{
"cell_type": "code",
2024-05-12 09:22:42 -05:00
"execution_count": 1,
"id": "c2a72242-6197-4bef-aa05-696a152350d5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2024-05-12 09:22:42 -05:00
"100% | 80.23 MB | 4.37 MB/s | 18.38 sec elapsed"
]
}
],
"source": [
2024-05-12 09:22:42 -05:00
"!python download-prepare-dataset.py"
]
},
{
"cell_type": "code",
2024-05-12 09:22:42 -05:00
"execution_count": 14,
"id": "69f32433-e19c-4066-b806-8f30b408107f",
"metadata": {},
2024-05-12 09:22:42 -05:00
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"train_df = pd.read_csv(\"train.csv\")\n",
"val_df = pd.read_csv(\"validation.csv\")\n",
"test_df = pd.read_csv(\"test.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "0808b212-fe91-48d9-80b8-55519f8835d5",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
2024-05-12 09:22:42 -05:00
" <th>text</th>\n",
" <th>label</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
2024-05-12 09:22:42 -05:00
" <td>The only reason I saw \"Shakedown\" was that it ...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
2024-05-12 09:22:42 -05:00
" <td>This is absolute drivel, designed to shock and...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
2024-05-12 09:22:42 -05:00
" <td>Lots of scenes and dialogue are flat-out goofy...</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
2024-05-12 09:22:42 -05:00
" <td>** and 1/2 stars out of **** Lifeforce is one ...</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
2024-05-12 09:22:42 -05:00
" <td>I learned a thing: you have to take this film ...</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
2024-05-12 09:22:42 -05:00
" text label\n",
"0 The only reason I saw \"Shakedown\" was that it ... 0\n",
"1 This is absolute drivel, designed to shock and... 0\n",
"2 Lots of scenes and dialogue are flat-out goofy... 1\n",
"3 ** and 1/2 stars out of **** Lifeforce is one ... 1\n",
"4 I learned a thing: you have to take this film ... 1"
]
},
2024-05-12 09:22:42 -05:00
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
2024-05-12 09:22:42 -05:00
"train_df.head()"
]
},
{
"cell_type": "markdown",
"id": "fae87bc1-14ca-4f89-8e12-49f77b0ec00d",
"metadata": {},
"source": [
"## Scikit-learn baseline"
]
},
{
"cell_type": "code",
2024-05-12 09:22:42 -05:00
"execution_count": 17,
"id": "180318b7-de18-4b05-b84a-ba97c72b9d8e",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.feature_extraction.text import CountVectorizer\n",
"from sklearn.linear_model import LogisticRegression\n",
2024-05-12 09:22:42 -05:00
"from sklearn.metrics import accuracy_score"
]
},
{
"cell_type": "code",
2024-05-12 09:22:42 -05:00
"execution_count": 20,
"id": "25090b7c-f516-4be2-8083-3a7187fe4635",
"metadata": {},
"outputs": [],
"source": [
"vectorizer = CountVectorizer()\n",
"\n",
2024-05-12 09:22:42 -05:00
"X_train = vectorizer.fit_transform(train_df[\"text\"])\n",
"X_val = vectorizer.transform(val_df[\"text\"])\n",
"X_test = vectorizer.transform(test_df[\"text\"])\n",
"\n",
2024-05-12 09:22:42 -05:00
"y_train, y_val, y_test = train_df[\"label\"], val_df[\"label\"], test_df[\"label\"]"
]
},
{
"cell_type": "code",
2024-05-12 09:22:42 -05:00
"execution_count": 22,
"id": "0247de3a-88f0-4b9c-becd-157baf3acf49",
"metadata": {},
"outputs": [],
"source": [
"def eval(model, X_train, y_train, X_val, y_val, X_test, y_test):\n",
" # Making predictions\n",
" y_pred_train = model.predict(X_train)\n",
" y_pred_val = model.predict(X_val)\n",
" y_pred_test = model.predict(X_test)\n",
" \n",
" # Calculating accuracy and balanced accuracy\n",
" accuracy_train = accuracy_score(y_train, y_pred_train)\n",
" balanced_accuracy_train = balanced_accuracy_score(y_train, y_pred_train)\n",
" \n",
" accuracy_val = accuracy_score(y_val, y_pred_val)\n",
" balanced_accuracy_val = balanced_accuracy_score(y_val, y_pred_val)\n",
"\n",
" accuracy_test = accuracy_score(y_test, y_pred_test)\n",
" balanced_accuracy_test = balanced_accuracy_score(y_test, y_pred_test)\n",
" \n",
" # Printing the results\n",
" print(f\"Training Accuracy: {accuracy_train*100:.2f}%\")\n",
" print(f\"Validation Accuracy: {accuracy_val*100:.2f}%\")\n",
2024-05-12 09:22:42 -05:00
" print(f\"Test Accuracy: {accuracy_test*100:.2f}%\")"
]
},
{
"cell_type": "code",
2024-05-12 09:22:42 -05:00
"execution_count": 23,
"id": "c29c6dfc-f72d-40ab-8cb5-783aad1a15ab",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2024-05-12 09:22:42 -05:00
"Training Accuracy: 50.01%\n",
"Validation Accuracy: 50.14%\n",
"Test Accuracy: 49.91%\n"
]
}
],
"source": [
"from sklearn.dummy import DummyClassifier\n",
"\n",
"# Create a dummy classifier with the strategy to predict the most frequent class\n",
"dummy_clf = DummyClassifier(strategy=\"most_frequent\")\n",
"dummy_clf.fit(X_train, y_train)\n",
"\n",
"eval(dummy_clf, X_train, y_train, X_val, y_val, X_test, y_test)"
]
},
{
"cell_type": "code",
2024-05-12 09:22:42 -05:00
"execution_count": 24,
"id": "088a8a3a-3b74-4d10-a51b-cb662569ae39",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2024-05-12 09:22:42 -05:00
"Training Accuracy: 99.80%\n",
"Validation Accuracy: 88.62%\n",
"Test Accuracy: 88.85%\n"
]
}
],
"source": [
"model = LogisticRegression(max_iter=1000)\n",
"model.fit(X_train, y_train)\n",
"eval(model, X_train, y_train, X_val, y_val, X_test, y_test)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2024-05-12 09:22:42 -05:00
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}