498 lines
18 KiB
Python
Raw Normal View History

# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import argparse
import os
from pathlib import Path
import time
import urllib
import zipfile
import pandas as pd
import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification
class SpamDataset(Dataset):
def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256, no_padding=False):
self.data = pd.read_csv(csv_file)
self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
# Pre-tokenize texts
self.encoded_texts = [
tokenizer.encode(text)[:self.max_length]
for text in self.data["Text"]
]
if not no_padding:
# Pad sequences to the longest sequence
self.encoded_texts = [
et + [pad_token_id] * (self.max_length - len(et))
for et in self.encoded_texts
]
def __getitem__(self, index):
encoded = self.encoded_texts[index]
label = self.data.iloc[index]["Label"]
return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long)
def __len__(self):
return len(self.data)
def _longest_encoded_length(self, tokenizer):
max_length = 0
for text in self.data["Text"]:
encoded_length = len(tokenizer.encode(text))
if encoded_length > max_length:
max_length = encoded_length
return max_length
def download_and_unzip(url, zip_path, extract_to, new_file_path):
if new_file_path.exists():
print(f"{new_file_path} already exists. Skipping download and extraction.")
return
# Downloading the file
with urllib.request.urlopen(url) as response:
with open(zip_path, "wb") as out_file:
out_file.write(response.read())
# Unzipping the file
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_to)
# Renaming the file to indicate its format
original_file = Path(extract_to) / "SMSSpamCollection"
os.rename(original_file, new_file_path)
print(f"File downloaded and saved as {new_file_path}")
def random_split(df, train_frac, validation_frac):
# Shuffle the entire DataFrame
df = df.sample(frac=1, random_state=123).reset_index(drop=True)
# Calculate split indices
train_end = int(len(df) * train_frac)
validation_end = train_end + int(len(df) * validation_frac)
# Split the DataFrame
train_df = df[:train_end]
validation_df = df[train_end:validation_end]
test_df = df[validation_end:]
return train_df, validation_df, test_df
def create_dataset_csvs(new_file_path):
df = pd.read_csv(new_file_path, sep="\t", header=None, names=["Label", "Text"])
# Create balanced dataset
n_spam = df[df["Label"] == "spam"].shape[0]
ham_sampled = df[df["Label"] == "ham"].sample(n_spam, random_state=123)
balanced_df = pd.concat([ham_sampled, df[df["Label"] == "spam"]])
balanced_df = balanced_df.sample(frac=1, random_state=123).reset_index(drop=True)
balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1})
# Sample and save csv files
train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1)
train_df.to_csv("train.csv", index=None)
validation_df.to_csv("validation.csv", index=None)
test_df.to_csv("test.csv", index=None)
class SPAMDataset(Dataset):
def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256, use_attention_mask=False):
self.data = pd.read_csv(csv_file)
self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
self.pad_token_id = pad_token_id
self.use_attention_mask = use_attention_mask
# Pre-tokenize texts and create attention masks if required
self.encoded_texts = [
tokenizer.encode(text, truncation=True, max_length=self.max_length)
for text in self.data["Text"]
]
self.encoded_texts = [
et + [pad_token_id] * (self.max_length - len(et))
for et in self.encoded_texts
]
if self.use_attention_mask:
self.attention_masks = [
self._create_attention_mask(et)
for et in self.encoded_texts
]
else:
self.attention_masks = None
def _create_attention_mask(self, encoded_text):
return [1 if token_id != self.pad_token_id else 0 for token_id in encoded_text]
def __getitem__(self, index):
encoded = self.encoded_texts[index]
label = self.data.iloc[index]["Label"]
if self.use_attention_mask:
attention_mask = self.attention_masks[index]
else:
attention_mask = torch.ones(self.max_length, dtype=torch.long)
return (
torch.tensor(encoded, dtype=torch.long),
torch.tensor(attention_mask, dtype=torch.long),
torch.tensor(label, dtype=torch.long)
)
def __len__(self):
return len(self.data)
def _longest_encoded_length(self, tokenizer):
max_length = 0
for text in self.data["Text"]:
encoded_length = len(tokenizer.encode(text))
if encoded_length > max_length:
max_length = encoded_length
return max_length
def calc_loss_batch(input_batch, attention_mask_batch, target_batch, model, device):
attention_mask_batch = attention_mask_batch.to(device)
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
2024-05-05 12:21:10 -05:00
# logits = model(input_batch)[:, -1, :] # Logits of last output token
logits = model(input_batch, attention_mask=attention_mask_batch).logits
loss = torch.nn.functional.cross_entropy(logits, target_batch)
return loss
# Same as in chapter 5
def calc_loss_loader(data_loader, model, device, num_batches=None):
total_loss = 0.
if num_batches is None:
num_batches = len(data_loader)
else:
# Reduce the number of batches to match the total number of batches in the data loader
# if num_batches exceeds the number of batches in the data loader
num_batches = min(num_batches, len(data_loader))
for i, (input_batch, attention_mask_batch, target_batch) in enumerate(data_loader):
if i < num_batches:
loss = calc_loss_batch(input_batch, attention_mask_batch, target_batch, model, device)
total_loss += loss.item()
else:
break
return total_loss / num_batches
@torch.no_grad() # Disable gradient tracking for efficiency
def calc_accuracy_loader(data_loader, model, device, num_batches=None):
model.eval()
correct_predictions, num_examples = 0, 0
if num_batches is None:
num_batches = len(data_loader)
else:
num_batches = min(num_batches, len(data_loader))
for i, (input_batch, attention_mask_batch, target_batch) in enumerate(data_loader):
if i < num_batches:
attention_mask_batch = attention_mask_batch.to(device)
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
2024-05-05 12:21:10 -05:00
# logits = model(input_batch)[:, -1, :] # Logits of last output token
logits = model(input_batch, attention_mask=attention_mask_batch).logits
predicted_labels = torch.argmax(logits, dim=1)
num_examples += predicted_labels.shape[0]
correct_predictions += (predicted_labels == target_batch).sum().item()
else:
break
return correct_predictions / num_examples
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
model.eval()
with torch.no_grad():
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
model.train()
return train_loss, val_loss
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
eval_freq, eval_iter, max_steps=None):
# Initialize lists to track losses and tokens seen
train_losses, val_losses, train_accs, val_accs = [], [], [], []
examples_seen, global_step = 0, -1
# Main training loop
for epoch in range(num_epochs):
model.train() # Set model to training mode
for input_batch, attention_mask_batch, target_batch in train_loader:
2024-06-09 06:14:02 -05:00
optimizer.zero_grad() # Reset loss gradients from previous batch iteration
loss = calc_loss_batch(input_batch, attention_mask_batch, target_batch, model, device)
loss.backward() # Calculate loss gradients
optimizer.step() # Update model weights using loss gradients
examples_seen += input_batch.shape[0] # New: track examples instead of tokens
global_step += 1
# Optional evaluation step
if global_step % eval_freq == 0:
train_loss, val_loss = evaluate_model(
model, train_loader, val_loader, device, eval_iter)
train_losses.append(train_loss)
val_losses.append(val_loss)
print(f"Ep {epoch+1} (Step {global_step:06d}): "
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
if max_steps is not None and global_step > max_steps:
break
# New: Calculate accuracy after each epoch
train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter)
val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter)
print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
train_accs.append(train_accuracy)
val_accs.append(val_accuracy)
if max_steps is not None and global_step > max_steps:
break
return train_losses, val_losses, train_accs, val_accs, examples_seen
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--trainable_layers",
type=str,
default="all",
help=(
"Which layers to train. Options: 'all', 'last_block', 'last_layer'."
)
)
parser.add_argument(
"--use_attention_mask",
type=str,
default="true",
help=(
"Whether to use a attention mask for padding tokens. Options: 'true', 'false'."
)
)
2024-04-28 13:57:36 -05:00
parser.add_argument(
"--model",
2024-04-28 13:57:36 -05:00
type=str,
default="distilbert",
help=(
"Which model to train. Options: 'distilbert', 'bert', 'roberta'."
)
)
parser.add_argument(
"--num_epochs",
type=int,
default=1,
help=(
"Number of epochs."
2024-04-28 13:57:36 -05:00
)
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help=(
"Learning rate."
)
)
args = parser.parse_args()
###############################
# Load model
###############################
2024-04-28 13:57:36 -05:00
torch.manual_seed(123)
if args.model == "distilbert":
2024-04-28 13:57:36 -05:00
model = AutoModelForSequenceClassification.from_pretrained(
"distilbert-base-uncased", num_labels=2
)
model.out_head = torch.nn.Linear(in_features=768, out_features=2)
for param in model.parameters():
param.requires_grad = False
2024-04-28 13:57:36 -05:00
if args.trainable_layers == "last_layer":
for param in model.out_head.parameters():
param.requires_grad = True
2024-04-28 13:57:36 -05:00
elif args.trainable_layers == "last_block":
for param in model.pre_classifier.parameters():
param.requires_grad = True
for param in model.distilbert.transformer.layer[-1].parameters():
param.requires_grad = True
elif args.trainable_layers == "all":
for param in model.parameters():
param.requires_grad = True
else:
raise ValueError("Invalid --trainable_layers argument.")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
elif args.model == "bert":
2024-04-28 13:57:36 -05:00
model = AutoModelForSequenceClassification.from_pretrained(
"bert-base-uncased", num_labels=2
2024-04-28 13:57:36 -05:00
)
model.classifier = torch.nn.Linear(in_features=768, out_features=2)
for param in model.parameters():
param.requires_grad = False
2024-04-28 13:57:36 -05:00
if args.trainable_layers == "last_layer":
for param in model.classifier.parameters():
param.requires_grad = True
2024-04-28 13:57:36 -05:00
elif args.trainable_layers == "last_block":
for param in model.classifier.parameters():
param.requires_grad = True
for param in model.bert.pooler.dense.parameters():
param.requires_grad = True
for param in model.bert.encoder.layer[-1].parameters():
2024-04-28 13:57:36 -05:00
param.requires_grad = True
elif args.trainable_layers == "all":
for param in model.parameters():
param.requires_grad = True
else:
raise ValueError("Invalid --trainable_layers argument.")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
elif args.model == "roberta":
model = AutoModelForSequenceClassification.from_pretrained(
"FacebookAI/roberta-large", num_labels=2
)
model.classifier.out_proj = torch.nn.Linear(in_features=1024, out_features=2)
for param in model.parameters():
param.requires_grad = False
if args.trainable_layers == "last_layer":
for param in model.classifier.parameters():
param.requires_grad = True
elif args.trainable_layers == "last_block":
for param in model.classifier.parameters():
param.requires_grad = True
for param in model.roberta.encoder.layer[-1].parameters():
param.requires_grad = True
elif args.trainable_layers == "all":
for param in model.parameters():
param.requires_grad = True
else:
raise ValueError("Invalid --trainable_layers argument.")
2024-04-28 13:57:36 -05:00
tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-large")
else:
raise ValueError("Selected --model {args.model} not supported.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
2024-04-28 13:57:36 -05:00
model.eval()
###############################
# Instantiate dataloaders
###############################
url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
zip_path = "sms_spam_collection.zip"
extract_to = "sms_spam_collection"
new_file_path = Path(extract_to) / "SMSSpamCollection.tsv"
2024-05-12 09:36:35 -05:00
base_path = Path(".")
file_names = ["train.csv", "validation.csv", "test.csv"]
all_exist = all((base_path / file_name).exists() for file_name in file_names)
2024-05-12 09:27:38 -05:00
if not all_exist:
download_and_unzip(url, zip_path, extract_to, new_file_path)
create_dataset_csvs(new_file_path)
if args.use_attention_mask.lower() == "true":
use_attention_mask = True
elif args.use_attention_mask.lower() == "false":
use_attention_mask = False
else:
raise ValueError("Invalid argument for `use_attention_mask`.")
train_dataset = SPAMDataset(
base_path / "train.csv",
max_length=256,
tokenizer=tokenizer,
pad_token_id=tokenizer.pad_token_id,
use_attention_mask=use_attention_mask
)
val_dataset = SPAMDataset(
base_path / "validation.csv",
max_length=256,
tokenizer=tokenizer,
pad_token_id=tokenizer.pad_token_id,
use_attention_mask=use_attention_mask
)
test_dataset = SPAMDataset(
base_path / "test.csv",
max_length=256,
tokenizer=tokenizer,
pad_token_id=tokenizer.pad_token_id,
use_attention_mask=use_attention_mask
)
num_workers = 0
batch_size = 8
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
drop_last=True,
)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=batch_size,
num_workers=num_workers,
drop_last=False,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
num_workers=num_workers,
drop_last=False,
)
###############################
# Train model
###############################
start_time = time.time()
torch.manual_seed(123)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=0.1)
train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
model, train_loader, val_loader, optimizer, device,
num_epochs=args.num_epochs, eval_freq=50, eval_iter=20,
max_steps=None
)
end_time = time.time()
execution_time_minutes = (end_time - start_time) / 60
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
###############################
# Evaluate model
###############################
print("\nEvaluating on the full datasets ...\n")
train_accuracy = calc_accuracy_loader(train_loader, model, device)
val_accuracy = calc_accuracy_loader(val_loader, model, device)
test_accuracy = calc_accuracy_loader(test_loader, model, device)
print(f"Training accuracy: {train_accuracy*100:.2f}%")
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
print(f"Test accuracy: {test_accuracy*100:.2f}%")