mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-11-21 12:38:01 +00:00
99 lines
2.8 KiB
Python
99 lines
2.8 KiB
Python
|
|
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||
|
|
# Source for "Build a Large Language Model From Scratch"
|
||
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||
|
|
|
||
|
|
# KV-cache memory estimator for MHA vs GQA
|
||
|
|
|
||
|
|
|
||
|
|
import argparse
|
||
|
|
import math
|
||
|
|
|
||
|
|
DTYPE_BYTES = {
|
||
|
|
"fp32": 4,
|
||
|
|
"bf16": 2,
|
||
|
|
"fp16": 2,
|
||
|
|
"fp8": 1,
|
||
|
|
"int8": 1,
|
||
|
|
}
|
||
|
|
|
||
|
|
|
||
|
|
def bytes_convert(n):
|
||
|
|
gb = n / (1000 ** 3)
|
||
|
|
return f"{gb:,.2f} GB"
|
||
|
|
|
||
|
|
|
||
|
|
def kv_bytes_total(batch, context_length, emb_dim, n_heads,
|
||
|
|
n_kv_heads, n_layers, bytes_per_elem):
|
||
|
|
head_dim = math.ceil(emb_dim / n_heads)
|
||
|
|
per_layer = batch * context_length * head_dim * n_kv_heads * 2 * bytes_per_elem
|
||
|
|
return per_layer * n_layers
|
||
|
|
|
||
|
|
|
||
|
|
def main():
|
||
|
|
p = argparse.ArgumentParser(description="Estimate KV-cache memory for MHA vs GQA")
|
||
|
|
p.add_argument("--context_length", default=1024, type=int)
|
||
|
|
p.add_argument("--emb_dim", required=True, type=int)
|
||
|
|
p.add_argument("--n_heads", required=True, type=int)
|
||
|
|
p.add_argument("--n_layers", required=True, type=int)
|
||
|
|
p.add_argument("--n_kv_groups", required=True, type=int)
|
||
|
|
p.add_argument("--batch_size", default=1, type=int)
|
||
|
|
p.add_argument("--dtype", choices=DTYPE_BYTES.keys(), default="fp16")
|
||
|
|
args = p.parse_args()
|
||
|
|
|
||
|
|
cfg = {
|
||
|
|
"context_length": args.context_length,
|
||
|
|
"emb_dim": args.emb_dim,
|
||
|
|
"n_heads": args.n_heads,
|
||
|
|
"n_layers": args.n_layers,
|
||
|
|
"n_kv_groups": args.n_kv_groups,
|
||
|
|
}
|
||
|
|
|
||
|
|
bytes_per_elem = DTYPE_BYTES[args.dtype]
|
||
|
|
head_dim = cfg["emb_dim"] / cfg["n_heads"]
|
||
|
|
|
||
|
|
n_kv_heads_mha = cfg["n_heads"]
|
||
|
|
n_kv_heads_gqa = cfg["n_heads"] // cfg["n_kv_groups"]
|
||
|
|
|
||
|
|
total_mha = kv_bytes_total(
|
||
|
|
args.batch_size,
|
||
|
|
cfg["context_length"],
|
||
|
|
cfg["emb_dim"],
|
||
|
|
cfg["n_heads"],
|
||
|
|
n_kv_heads_mha,
|
||
|
|
cfg["n_layers"],
|
||
|
|
bytes_per_elem,
|
||
|
|
)
|
||
|
|
|
||
|
|
total_gqa = kv_bytes_total(
|
||
|
|
args.batch_size,
|
||
|
|
cfg["context_length"],
|
||
|
|
cfg["emb_dim"],
|
||
|
|
cfg["n_heads"],
|
||
|
|
n_kv_heads_gqa,
|
||
|
|
cfg["n_layers"],
|
||
|
|
bytes_per_elem,
|
||
|
|
)
|
||
|
|
|
||
|
|
ratio = total_mha / total_gqa
|
||
|
|
savings = 1 - (total_gqa / total_mha)
|
||
|
|
|
||
|
|
print("==== Config ====")
|
||
|
|
for k, v in cfg.items():
|
||
|
|
print(f"{k:17}: {v}")
|
||
|
|
print(f"batch_size : {args.batch_size}")
|
||
|
|
print(f"dtype : {args.dtype} ({bytes_per_elem} Bytes/elem)")
|
||
|
|
print(f"head_dim : {int(head_dim)}")
|
||
|
|
print(f"GQA n_kv_heads : {n_kv_heads_gqa}")
|
||
|
|
print()
|
||
|
|
|
||
|
|
print("==== KV-cache totals across all layers ====")
|
||
|
|
print(f"MHA total KV cache : {bytes_convert(total_mha)}")
|
||
|
|
print(f"GQA total KV cache : {bytes_convert(total_gqa)}")
|
||
|
|
print(f"Ratio (MHA / GQA) : {ratio:,.2f}x")
|
||
|
|
print(f"Savings (GQA vs MHA): {savings*100:,.2f}%")
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == "__main__":
|
||
|
|
main()
|