| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | 
					
						
							|  |  |  | # Source for "Build a Large Language Model From Scratch" | 
					
						
							|  |  |  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | 
					
						
							|  |  |  | # Code: https://github.com/rasbt/LLMs-from-scratch | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # This is a summary file containing the main takeaways from chapter 6. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import urllib.request | 
					
						
							|  |  |  | import zipfile | 
					
						
							|  |  |  | import os | 
					
						
							|  |  |  | from pathlib import Path | 
					
						
							|  |  |  | import time | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import matplotlib.pyplot as plt | 
					
						
							|  |  |  | import pandas as pd | 
					
						
							|  |  |  | import tiktoken | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | from torch.utils.data import Dataset, DataLoader | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from gpt_download import download_and_load_gpt2 | 
					
						
							|  |  |  | from previous_chapters import GPTModel, load_weights_into_gpt | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-18 17:38:19 -05:00
										 |  |  | def download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path, test_mode=False): | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  |     if data_file_path.exists(): | 
					
						
							|  |  |  |         print(f"{data_file_path} already exists. Skipping download and extraction.") | 
					
						
							|  |  |  |         return | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-18 17:38:19 -05:00
										 |  |  |     if test_mode:  # Try multiple times since CI sometimes has connectivity issues | 
					
						
							|  |  |  |         max_retries = 5 | 
					
						
							|  |  |  |         delay = 5  # delay between retries in seconds | 
					
						
							|  |  |  |         for attempt in range(max_retries): | 
					
						
							|  |  |  |             try: | 
					
						
							|  |  |  |                 # Downloading the file | 
					
						
							|  |  |  |                 with urllib.request.urlopen(url, timeout=10) as response: | 
					
						
							|  |  |  |                     with open(zip_path, "wb") as out_file: | 
					
						
							|  |  |  |                         out_file.write(response.read()) | 
					
						
							|  |  |  |                 break  # if download is successful, break out of the loop | 
					
						
							|  |  |  |             except urllib.error.URLError as e: | 
					
						
							|  |  |  |                 print(f"Attempt {attempt + 1} failed: {e}") | 
					
						
							|  |  |  |                 if attempt < max_retries - 1: | 
					
						
							|  |  |  |                     time.sleep(delay)  # wait before retrying | 
					
						
							|  |  |  |                 else: | 
					
						
							|  |  |  |                     print("Failed to download file after several attempts.") | 
					
						
							|  |  |  |                     return  # exit if all retries fail | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     else:  # Code as it appears in the chapter | 
					
						
							|  |  |  |         # Downloading the file | 
					
						
							|  |  |  |         with urllib.request.urlopen(url) as response: | 
					
						
							|  |  |  |             with open(zip_path, "wb") as out_file: | 
					
						
							|  |  |  |                 out_file.write(response.read()) | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # Unzipping the file | 
					
						
							|  |  |  |     with zipfile.ZipFile(zip_path, "r") as zip_ref: | 
					
						
							|  |  |  |         zip_ref.extractall(extracted_path) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Add .tsv file extension | 
					
						
							|  |  |  |     original_file_path = Path(extracted_path) / "SMSSpamCollection" | 
					
						
							|  |  |  |     os.rename(original_file_path, data_file_path) | 
					
						
							|  |  |  |     print(f"File downloaded and saved as {data_file_path}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def create_balanced_dataset(df): | 
					
						
							|  |  |  |     # Count the instances of "spam" | 
					
						
							|  |  |  |     num_spam = df[df["Label"] == "spam"].shape[0] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Randomly sample "ham" instances to match the number of "spam" instances | 
					
						
							|  |  |  |     ham_subset = df[df["Label"] == "ham"].sample(num_spam, random_state=123) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Combine ham "subset" with "spam" | 
					
						
							|  |  |  |     balanced_df = pd.concat([ham_subset, df[df["Label"] == "spam"]]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return balanced_df | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def random_split(df, train_frac, validation_frac): | 
					
						
							|  |  |  |     # Shuffle the entire DataFrame | 
					
						
							|  |  |  |     df = df.sample(frac=1, random_state=123).reset_index(drop=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Calculate split indices | 
					
						
							|  |  |  |     train_end = int(len(df) * train_frac) | 
					
						
							|  |  |  |     validation_end = train_end + int(len(df) * validation_frac) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Split the DataFrame | 
					
						
							|  |  |  |     train_df = df[:train_end] | 
					
						
							|  |  |  |     validation_df = df[train_end:validation_end] | 
					
						
							|  |  |  |     test_df = df[validation_end:] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return train_df, validation_df, test_df | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class SpamDataset(Dataset): | 
					
						
							|  |  |  |     def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256): | 
					
						
							|  |  |  |         self.data = pd.read_csv(csv_file) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Pre-tokenize texts | 
					
						
							|  |  |  |         self.encoded_texts = [ | 
					
						
							|  |  |  |             tokenizer.encode(text) for text in self.data["Text"] | 
					
						
							|  |  |  |         ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         if max_length is None: | 
					
						
							|  |  |  |             self.max_length = self._longest_encoded_length() | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             self.max_length = max_length | 
					
						
							|  |  |  |             # Truncate sequences if they are longer than max_length | 
					
						
							|  |  |  |             self.encoded_texts = [ | 
					
						
							|  |  |  |                 encoded_text[:self.max_length] | 
					
						
							|  |  |  |                 for encoded_text in self.encoded_texts | 
					
						
							|  |  |  |             ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Pad sequences to the longest sequence | 
					
						
							|  |  |  |         self.encoded_texts = [ | 
					
						
							|  |  |  |             encoded_text + [pad_token_id] * (self.max_length - len(encoded_text)) | 
					
						
							|  |  |  |             for encoded_text in self.encoded_texts | 
					
						
							|  |  |  |         ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __getitem__(self, index): | 
					
						
							|  |  |  |         encoded = self.encoded_texts[index] | 
					
						
							|  |  |  |         label = self.data.iloc[index]["Label"] | 
					
						
							|  |  |  |         return ( | 
					
						
							|  |  |  |             torch.tensor(encoded, dtype=torch.long), | 
					
						
							|  |  |  |             torch.tensor(label, dtype=torch.long) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def __len__(self): | 
					
						
							|  |  |  |         return len(self.data) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def _longest_encoded_length(self): | 
					
						
							|  |  |  |         max_length = 0 | 
					
						
							|  |  |  |         for encoded_text in self.encoded_texts: | 
					
						
							|  |  |  |             encoded_length = len(encoded_text) | 
					
						
							|  |  |  |             if encoded_length > max_length: | 
					
						
							|  |  |  |                 max_length = encoded_length | 
					
						
							|  |  |  |         return max_length | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def calc_accuracy_loader(data_loader, model, device, num_batches=None): | 
					
						
							|  |  |  |     model.eval() | 
					
						
							|  |  |  |     correct_predictions, num_examples = 0, 0 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if num_batches is None: | 
					
						
							|  |  |  |         num_batches = len(data_loader) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         num_batches = min(num_batches, len(data_loader)) | 
					
						
							|  |  |  |     for i, (input_batch, target_batch) in enumerate(data_loader): | 
					
						
							|  |  |  |         if i < num_batches: | 
					
						
							|  |  |  |             input_batch, target_batch = input_batch.to(device), target_batch.to(device) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             with torch.no_grad(): | 
					
						
							|  |  |  |                 logits = model(input_batch)[:, -1, :]  # Logits of last output token | 
					
						
							|  |  |  |             predicted_labels = torch.argmax(logits, dim=-1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             num_examples += predicted_labels.shape[0] | 
					
						
							|  |  |  |             correct_predictions += (predicted_labels == target_batch).sum().item() | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             break | 
					
						
							|  |  |  |     return correct_predictions / num_examples | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def calc_loss_batch(input_batch, target_batch, model, device): | 
					
						
							|  |  |  |     input_batch, target_batch = input_batch.to(device), target_batch.to(device) | 
					
						
							|  |  |  |     logits = model(input_batch)[:, -1, :]  # Logits of last output token | 
					
						
							|  |  |  |     loss = torch.nn.functional.cross_entropy(logits, target_batch) | 
					
						
							|  |  |  |     return loss | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def calc_loss_loader(data_loader, model, device, num_batches=None): | 
					
						
							|  |  |  |     total_loss = 0. | 
					
						
							|  |  |  |     if len(data_loader) == 0: | 
					
						
							|  |  |  |         return float("nan") | 
					
						
							|  |  |  |     elif num_batches is None: | 
					
						
							|  |  |  |         num_batches = len(data_loader) | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         num_batches = min(num_batches, len(data_loader)) | 
					
						
							|  |  |  |     for i, (input_batch, target_batch) in enumerate(data_loader): | 
					
						
							|  |  |  |         if i < num_batches: | 
					
						
							|  |  |  |             loss = calc_loss_batch(input_batch, target_batch, model, device) | 
					
						
							|  |  |  |             total_loss += loss.item() | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             break | 
					
						
							|  |  |  |     return total_loss / num_batches | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def evaluate_model(model, train_loader, val_loader, device, eval_iter): | 
					
						
							|  |  |  |     model.eval() | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |         train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) | 
					
						
							|  |  |  |         val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) | 
					
						
							|  |  |  |     model.train() | 
					
						
							|  |  |  |     return train_loss, val_loss | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs, | 
					
						
							|  |  |  |                             eval_freq, eval_iter, tokenizer): | 
					
						
							|  |  |  |     # Initialize lists to track losses and tokens seen | 
					
						
							|  |  |  |     train_losses, val_losses, train_accs, val_accs = [], [], [], [] | 
					
						
							|  |  |  |     examples_seen, global_step = 0, -1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Main training loop | 
					
						
							|  |  |  |     for epoch in range(num_epochs): | 
					
						
							|  |  |  |         model.train()  # Set model to training mode | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for input_batch, target_batch in train_loader: | 
					
						
							|  |  |  |             optimizer.zero_grad()  # Reset loss gradients from previous epoch | 
					
						
							|  |  |  |             loss = calc_loss_batch(input_batch, target_batch, model, device) | 
					
						
							|  |  |  |             loss.backward()  # Calculate loss gradients | 
					
						
							|  |  |  |             optimizer.step()  # Update model weights using loss gradients | 
					
						
							|  |  |  |             examples_seen += input_batch.shape[0]  # New: track examples instead of tokens | 
					
						
							|  |  |  |             global_step += 1 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             # Optional evaluation step | 
					
						
							|  |  |  |             if global_step % eval_freq == 0: | 
					
						
							|  |  |  |                 train_loss, val_loss = evaluate_model( | 
					
						
							|  |  |  |                     model, train_loader, val_loader, device, eval_iter) | 
					
						
							|  |  |  |                 train_losses.append(train_loss) | 
					
						
							|  |  |  |                 val_losses.append(val_loss) | 
					
						
							|  |  |  |                 print(f"Ep {epoch+1} (Step {global_step:06d}): " | 
					
						
							|  |  |  |                       f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Calculate accuracy after each epoch | 
					
						
							|  |  |  |         train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter) | 
					
						
							|  |  |  |         val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter) | 
					
						
							|  |  |  |         print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="") | 
					
						
							|  |  |  |         print(f"Validation accuracy: {val_accuracy*100:.2f}%") | 
					
						
							|  |  |  |         train_accs.append(train_accuracy) | 
					
						
							|  |  |  |         val_accs.append(val_accuracy) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return train_losses, val_losses, train_accs, val_accs, examples_seen | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def plot_values(epochs_seen, examples_seen, train_values, val_values, label="loss"): | 
					
						
							|  |  |  |     fig, ax1 = plt.subplots(figsize=(5, 3)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Plot training and validation loss against epochs | 
					
						
							|  |  |  |     ax1.plot(epochs_seen, train_values, label=f"Training {label}") | 
					
						
							|  |  |  |     ax1.plot(epochs_seen, val_values, linestyle="-.", label=f"Validation {label}") | 
					
						
							|  |  |  |     ax1.set_xlabel("Epochs") | 
					
						
							|  |  |  |     ax1.set_ylabel(label.capitalize()) | 
					
						
							|  |  |  |     ax1.legend() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Create a second x-axis for tokens seen | 
					
						
							|  |  |  |     ax2 = ax1.twiny()  # Create a second x-axis that shares the same y-axis | 
					
						
							|  |  |  |     ax2.plot(examples_seen, train_values, alpha=0)  # Invisible plot for aligning ticks | 
					
						
							|  |  |  |     ax2.set_xlabel("Examples seen") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     fig.tight_layout()  # Adjust layout to make room | 
					
						
							|  |  |  |     plt.savefig(f"{label}-plot.pdf") | 
					
						
							| 
									
										
										
										
											2024-05-13 07:50:51 -05:00
										 |  |  |     # plt.show() | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-12 18:51:28 -05:00
										 |  |  |     import argparse | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser( | 
					
						
							|  |  |  |         description="Finetune a GPT model for classification" | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         "--test_mode", | 
					
						
							| 
									
										
										
										
											2024-05-18 17:38:19 -05:00
										 |  |  |         default=False, | 
					
						
							| 
									
										
										
										
											2024-05-12 18:51:28 -05:00
										 |  |  |         action="store_true", | 
					
						
							|  |  |  |         help=("This flag runs the model in test mode for internal testing purposes. " | 
					
						
							|  |  |  |               "Otherwise, it runs the model as it is used in the chapter (recommended).") | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     args = parser.parse_args() | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  |     ######################################## | 
					
						
							|  |  |  |     # Download and prepare dataset | 
					
						
							|  |  |  |     ######################################## | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip" | 
					
						
							|  |  |  |     zip_path = "sms_spam_collection.zip" | 
					
						
							|  |  |  |     extracted_path = "sms_spam_collection" | 
					
						
							|  |  |  |     data_file_path = Path(extracted_path) / "SMSSpamCollection.tsv" | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-18 17:38:19 -05:00
										 |  |  |     download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path, test_mode=args.test_mode) | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  |     df = pd.read_csv(data_file_path, sep="\t", header=None, names=["Label", "Text"]) | 
					
						
							|  |  |  |     balanced_df = create_balanced_dataset(df) | 
					
						
							|  |  |  |     balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1}) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1) | 
					
						
							|  |  |  |     train_df.to_csv("train.csv", index=None) | 
					
						
							|  |  |  |     validation_df.to_csv("validation.csv", index=None) | 
					
						
							|  |  |  |     test_df.to_csv("test.csv", index=None) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ######################################## | 
					
						
							|  |  |  |     # Create data loaders | 
					
						
							|  |  |  |     ######################################## | 
					
						
							|  |  |  |     tokenizer = tiktoken.get_encoding("gpt2") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     train_dataset = SpamDataset( | 
					
						
							|  |  |  |         csv_file="train.csv", | 
					
						
							|  |  |  |         max_length=None, | 
					
						
							|  |  |  |         tokenizer=tokenizer | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     val_dataset = SpamDataset( | 
					
						
							|  |  |  |         csv_file="validation.csv", | 
					
						
							|  |  |  |         max_length=train_dataset.max_length, | 
					
						
							|  |  |  |         tokenizer=tokenizer | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     test_dataset = SpamDataset( | 
					
						
							|  |  |  |         csv_file="test.csv", | 
					
						
							|  |  |  |         max_length=train_dataset.max_length, | 
					
						
							|  |  |  |         tokenizer=tokenizer | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     num_workers = 0 | 
					
						
							|  |  |  |     batch_size = 8 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     torch.manual_seed(123) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     train_loader = DataLoader( | 
					
						
							|  |  |  |         dataset=train_dataset, | 
					
						
							|  |  |  |         batch_size=batch_size, | 
					
						
							|  |  |  |         shuffle=True, | 
					
						
							|  |  |  |         num_workers=num_workers, | 
					
						
							|  |  |  |         drop_last=True, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     val_loader = DataLoader( | 
					
						
							|  |  |  |         dataset=val_dataset, | 
					
						
							|  |  |  |         batch_size=batch_size, | 
					
						
							|  |  |  |         num_workers=num_workers, | 
					
						
							|  |  |  |         drop_last=False, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     test_loader = DataLoader( | 
					
						
							|  |  |  |         dataset=test_dataset, | 
					
						
							|  |  |  |         batch_size=batch_size, | 
					
						
							|  |  |  |         num_workers=num_workers, | 
					
						
							|  |  |  |         drop_last=False, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ######################################## | 
					
						
							|  |  |  |     # Load pretrained model | 
					
						
							|  |  |  |     ######################################## | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-12 18:51:28 -05:00
										 |  |  |     # Small GPT model for testing purposes | 
					
						
							|  |  |  |     if args.test_mode: | 
					
						
							|  |  |  |         BASE_CONFIG = { | 
					
						
							|  |  |  |             "vocab_size": 50257, | 
					
						
							|  |  |  |             "context_length": 120, | 
					
						
							|  |  |  |             "drop_rate": 0.0, | 
					
						
							|  |  |  |             "qkv_bias": False, | 
					
						
							|  |  |  |             "emb_dim": 12, | 
					
						
							|  |  |  |             "n_layers": 1, | 
					
						
							|  |  |  |             "n_heads": 2 | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         model = GPTModel(BASE_CONFIG) | 
					
						
							|  |  |  |         model.eval() | 
					
						
							|  |  |  |         device = "cpu" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Code as it is used in the main chapter | 
					
						
							|  |  |  |     else: | 
					
						
							|  |  |  |         CHOOSE_MODEL = "gpt2-small (124M)" | 
					
						
							|  |  |  |         INPUT_PROMPT = "Every effort moves" | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-12 18:51:28 -05:00
										 |  |  |         BASE_CONFIG = { | 
					
						
							|  |  |  |             "vocab_size": 50257,     # Vocabulary size | 
					
						
							|  |  |  |             "context_length": 1024,  # Context length | 
					
						
							|  |  |  |             "drop_rate": 0.0,        # Dropout rate | 
					
						
							|  |  |  |             "qkv_bias": True         # Query-key-value bias | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-12 18:51:28 -05:00
										 |  |  |         model_configs = { | 
					
						
							|  |  |  |             "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12}, | 
					
						
							|  |  |  |             "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16}, | 
					
						
							|  |  |  |             "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20}, | 
					
						
							|  |  |  |             "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25}, | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-12 18:51:28 -05:00
										 |  |  |         BASE_CONFIG.update(model_configs[CHOOSE_MODEL]) | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-23 06:50:43 -05:00
										 |  |  |         assert train_dataset.max_length <= BASE_CONFIG["context_length"], ( | 
					
						
							|  |  |  |             f"Dataset length {train_dataset.max_length} exceeds model's context " | 
					
						
							|  |  |  |             f"length {BASE_CONFIG['context_length']}. Reinitialize data sets with " | 
					
						
							|  |  |  |             f"`max_length={BASE_CONFIG['context_length']}`" | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-12 18:51:28 -05:00
										 |  |  |         model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")") | 
					
						
							|  |  |  |         settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2") | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-12 18:51:28 -05:00
										 |  |  |         model = GPTModel(BASE_CONFIG) | 
					
						
							|  |  |  |         load_weights_into_gpt(model, params) | 
					
						
							|  |  |  |         device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  |     ######################################## | 
					
						
							|  |  |  |     # Modify and pretrained model | 
					
						
							|  |  |  |     ######################################## | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for param in model.parameters(): | 
					
						
							|  |  |  |         param.requires_grad = False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     torch.manual_seed(123) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     num_classes = 2 | 
					
						
							|  |  |  |     model.out_head = torch.nn.Linear(in_features=BASE_CONFIG["emb_dim"], out_features=num_classes) | 
					
						
							| 
									
										
										
										
											2024-05-22 17:51:51 -05:00
										 |  |  |     model.to(device) | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  |     for param in model.trf_blocks[-1].parameters(): | 
					
						
							|  |  |  |         param.requires_grad = True | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for param in model.final_norm.parameters(): | 
					
						
							|  |  |  |         param.requires_grad = True | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ######################################## | 
					
						
							|  |  |  |     # Finetune modified model | 
					
						
							|  |  |  |     ######################################## | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     start_time = time.time() | 
					
						
							|  |  |  |     torch.manual_seed(123) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     num_epochs = 5 | 
					
						
							|  |  |  |     train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple( | 
					
						
							|  |  |  |         model, train_loader, val_loader, optimizer, device, | 
					
						
							|  |  |  |         num_epochs=num_epochs, eval_freq=50, eval_iter=5, | 
					
						
							|  |  |  |         tokenizer=tokenizer | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     end_time = time.time() | 
					
						
							|  |  |  |     execution_time_minutes = (end_time - start_time) / 60 | 
					
						
							|  |  |  |     print(f"Training completed in {execution_time_minutes:.2f} minutes.") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ######################################## | 
					
						
							|  |  |  |     # Plot results | 
					
						
							|  |  |  |     ######################################## | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2024-05-12 18:51:28 -05:00
										 |  |  |     # loss plot | 
					
						
							| 
									
										
										
										
											2024-05-12 18:27:50 -05:00
										 |  |  |     epochs_tensor = torch.linspace(0, num_epochs, len(train_losses)) | 
					
						
							|  |  |  |     examples_seen_tensor = torch.linspace(0, examples_seen, len(train_losses)) | 
					
						
							|  |  |  |     plot_values(epochs_tensor, examples_seen_tensor, train_losses, val_losses) | 
					
						
							| 
									
										
										
										
											2024-05-12 18:51:28 -05:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # accuracy plot | 
					
						
							|  |  |  |     epochs_tensor = torch.linspace(0, num_epochs, len(train_accs)) | 
					
						
							|  |  |  |     examples_seen_tensor = torch.linspace(0, examples_seen, len(train_accs)) | 
					
						
							| 
									
										
										
										
											2024-05-13 07:50:51 -05:00
										 |  |  |     plot_values(epochs_tensor, examples_seen_tensor, train_accs, val_accs, label="accuracy") |