mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-04 14:52:17 +00:00
271 lines
9.8 KiB
Python
271 lines
9.8 KiB
Python
![]() |
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||
|
# Source for "Build a Large Language Model From Scratch"
|
||
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||
|
|
||
|
import argparse
|
||
|
from pathlib import Path
|
||
|
import time
|
||
|
|
||
|
import pandas as pd
|
||
|
import torch
|
||
|
from torch.utils.data import DataLoader
|
||
|
from torch.utils.data import Dataset
|
||
|
|
||
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||
|
|
||
|
|
||
|
class IMDBDataset(Dataset):
|
||
|
def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256):
|
||
|
self.data = pd.read_csv(csv_file)
|
||
|
self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
|
||
|
|
||
|
# Pre-tokenize texts
|
||
|
self.encoded_texts = [
|
||
|
tokenizer.encode(text)[:self.max_length]
|
||
|
for text in self.data["text"]
|
||
|
]
|
||
|
# Pad sequences to the longest sequence
|
||
|
|
||
|
# Debug
|
||
|
pad_token_id = 0
|
||
|
|
||
|
self.encoded_texts = [
|
||
|
et + [pad_token_id] * (self.max_length - len(et))
|
||
|
for et in self.encoded_texts
|
||
|
]
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
encoded = self.encoded_texts[index]
|
||
|
label = self.data.iloc[index]["label"]
|
||
|
return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.data)
|
||
|
|
||
|
def _longest_encoded_length(self, tokenizer):
|
||
|
max_length = 0
|
||
|
for text in self.data["text"]:
|
||
|
encoded_length = len(tokenizer.encode(text))
|
||
|
if encoded_length > max_length:
|
||
|
max_length = encoded_length
|
||
|
return max_length
|
||
|
|
||
|
|
||
|
def calc_loss_batch(input_batch, target_batch, model, device):
|
||
|
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||
|
# logits = model(input_batch)[:, -1, :] # Logits of last ouput token
|
||
|
logits = model(input_batch).logits
|
||
|
loss = torch.nn.functional.cross_entropy(logits, target_batch)
|
||
|
return loss
|
||
|
|
||
|
|
||
|
# Same as in chapter 5
|
||
|
def calc_loss_loader(data_loader, model, device, num_batches=None):
|
||
|
total_loss = 0.
|
||
|
if num_batches is None:
|
||
|
num_batches = len(data_loader)
|
||
|
else:
|
||
|
# Reduce the number of batches to match the total number of batches in the data loader
|
||
|
# if num_batches exceeds the number of batches in the data loader
|
||
|
num_batches = min(num_batches, len(data_loader))
|
||
|
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||
|
if i < num_batches:
|
||
|
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
||
|
total_loss += loss.item()
|
||
|
else:
|
||
|
break
|
||
|
return total_loss / num_batches
|
||
|
|
||
|
|
||
|
@torch.no_grad() # Disable gradient tracking for efficiency
|
||
|
def calc_accuracy_loader(data_loader, model, device, num_batches=None):
|
||
|
model.eval()
|
||
|
correct_predictions, num_examples = 0, 0
|
||
|
|
||
|
if num_batches is None:
|
||
|
num_batches = len(data_loader)
|
||
|
else:
|
||
|
num_batches = min(num_batches, len(data_loader))
|
||
|
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||
|
if i < num_batches:
|
||
|
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||
|
# logits = model(input_batch)[:, -1, :] # Logits of last ouput token
|
||
|
logits = model(input_batch).logits
|
||
|
predicted_labels = torch.argmax(logits, dim=1)
|
||
|
num_examples += predicted_labels.shape[0]
|
||
|
correct_predictions += (predicted_labels == target_batch).sum().item()
|
||
|
else:
|
||
|
break
|
||
|
return correct_predictions / num_examples
|
||
|
|
||
|
|
||
|
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
|
||
|
model.eval()
|
||
|
with torch.no_grad():
|
||
|
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
|
||
|
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
|
||
|
model.train()
|
||
|
return train_loss, val_loss
|
||
|
|
||
|
|
||
|
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
|
||
|
eval_freq, eval_iter, tokenizer, max_steps=None):
|
||
|
# Initialize lists to track losses and tokens seen
|
||
|
train_losses, val_losses, train_accs, val_accs = [], [], [], []
|
||
|
examples_seen, global_step = 0, -1
|
||
|
|
||
|
# Main training loop
|
||
|
for epoch in range(num_epochs):
|
||
|
model.train() # Set model to training mode
|
||
|
|
||
|
for input_batch, target_batch in train_loader:
|
||
|
optimizer.zero_grad() # Reset loss gradients from previous epoch
|
||
|
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
||
|
loss.backward() # Calculate loss gradients
|
||
|
optimizer.step() # Update model weights using loss gradients
|
||
|
examples_seen += input_batch.shape[0] # New: track examples instead of tokens
|
||
|
global_step += 1
|
||
|
|
||
|
# Optional evaluation step
|
||
|
if global_step % eval_freq == 0:
|
||
|
train_loss, val_loss = evaluate_model(
|
||
|
model, train_loader, val_loader, device, eval_iter)
|
||
|
train_losses.append(train_loss)
|
||
|
val_losses.append(val_loss)
|
||
|
print(f"Ep {epoch+1} (Step {global_step:06d}): "
|
||
|
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
|
||
|
|
||
|
if max_steps is not None and global_step > max_steps:
|
||
|
break
|
||
|
|
||
|
# New: Calculate accuracy after each epoch
|
||
|
train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter)
|
||
|
val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter)
|
||
|
print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
|
||
|
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
|
||
|
train_accs.append(train_accuracy)
|
||
|
val_accs.append(val_accuracy)
|
||
|
|
||
|
if max_steps is not None and global_step > max_steps:
|
||
|
break
|
||
|
|
||
|
return train_losses, val_losses, train_accs, val_accs, examples_seen
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument(
|
||
|
"--trainable_layers",
|
||
|
type=str,
|
||
|
default="last_block",
|
||
|
help=(
|
||
|
"Which layers to train. Options: 'all', 'last_block', 'last_layer'."
|
||
|
)
|
||
|
)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
###############################
|
||
|
# Load model
|
||
|
###############################
|
||
|
model = AutoModelForSequenceClassification.from_pretrained(
|
||
|
"distilbert-base-uncased", num_labels=2
|
||
|
)
|
||
|
torch.manual_seed(123)
|
||
|
model.out_head = torch.nn.Linear(in_features=768, out_features=2)
|
||
|
|
||
|
if args.trainable_layers == "last_layer":
|
||
|
pass
|
||
|
elif args.trainable_layers == "last_block":
|
||
|
for param in model.pre_classifier.parameters():
|
||
|
param.requires_grad = True
|
||
|
for param in model.distilbert.transformer.layer[-1].parameters():
|
||
|
param.requires_grad = True
|
||
|
elif args.trainable_layers == "all":
|
||
|
for param in model.parameters():
|
||
|
param.requires_grad = True
|
||
|
else:
|
||
|
raise ValueError("Invalid --trainable_layers argument.")
|
||
|
|
||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
model.to(device)
|
||
|
|
||
|
###############################
|
||
|
# Instantiate dataloaders
|
||
|
###############################
|
||
|
|
||
|
url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
|
||
|
zip_path = "sms_spam_collection.zip"
|
||
|
extract_to = "sms_spam_collection"
|
||
|
new_file_path = Path(extract_to) / "SMSSpamCollection.tsv"
|
||
|
|
||
|
base_path = Path(".")
|
||
|
file_names = ["train.csv", "val.csv", "test.csv"]
|
||
|
all_exist = all((base_path / file_name).exists() for file_name in file_names)
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
||
|
pad_token_id = tokenizer.encode(tokenizer.pad_token)
|
||
|
|
||
|
train_dataset = IMDBDataset(base_path / "train.csv", max_length=256, tokenizer=tokenizer, pad_token_id=pad_token_id)
|
||
|
val_dataset = IMDBDataset(base_path / "val.csv", max_length=256, tokenizer=tokenizer, pad_token_id=pad_token_id)
|
||
|
test_dataset = IMDBDataset(base_path / "test.csv", max_length=256, tokenizer=tokenizer, pad_token_id=pad_token_id)
|
||
|
|
||
|
num_workers = 0
|
||
|
batch_size = 8
|
||
|
|
||
|
train_loader = DataLoader(
|
||
|
dataset=train_dataset,
|
||
|
batch_size=batch_size,
|
||
|
shuffle=True,
|
||
|
num_workers=num_workers,
|
||
|
drop_last=True,
|
||
|
)
|
||
|
|
||
|
val_loader = DataLoader(
|
||
|
dataset=val_dataset,
|
||
|
batch_size=batch_size,
|
||
|
num_workers=num_workers,
|
||
|
drop_last=False,
|
||
|
)
|
||
|
|
||
|
test_loader = DataLoader(
|
||
|
dataset=test_dataset,
|
||
|
batch_size=batch_size,
|
||
|
num_workers=num_workers,
|
||
|
drop_last=False,
|
||
|
)
|
||
|
|
||
|
###############################
|
||
|
# Train model
|
||
|
###############################
|
||
|
|
||
|
start_time = time.time()
|
||
|
torch.manual_seed(123)
|
||
|
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
|
||
|
|
||
|
num_epochs = 3
|
||
|
train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
|
||
|
model, train_loader, val_loader, optimizer, device,
|
||
|
num_epochs=num_epochs, eval_freq=50, eval_iter=20,
|
||
|
tokenizer=tokenizer, max_steps=None
|
||
|
)
|
||
|
|
||
|
end_time = time.time()
|
||
|
execution_time_minutes = (end_time - start_time) / 60
|
||
|
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
|
||
|
|
||
|
###############################
|
||
|
# Evaluate model
|
||
|
###############################
|
||
|
|
||
|
print("\nEvaluating on the full datasets ...\n")
|
||
|
|
||
|
train_accuracy = calc_accuracy_loader(train_loader, model, device)
|
||
|
val_accuracy = calc_accuracy_loader(val_loader, model, device)
|
||
|
test_accuracy = calc_accuracy_loader(test_loader, model, device)
|
||
|
|
||
|
print(f"Training accuracy: {train_accuracy*100:.2f}%")
|
||
|
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
|
||
|
print(f"Test accuracy: {test_accuracy*100:.2f}%")
|