mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 09:50:23 +00:00 
			
		
		
		
	
		
			
	
	
		
			94 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			94 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | ||
|  | # Source for "Build a Large Language Model From Scratch" | ||
|  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | ||
|  | # Code: https://github.com/rasbt/LLMs-from-scratch | ||
|  | 
 | ||
|  | from pathlib import Path | ||
|  | import sys | ||
|  | 
 | ||
|  | import tiktoken | ||
|  | import torch | ||
|  | import chainlit | ||
|  | 
 | ||
|  | from previous_chapters import ( | ||
|  |     generate, | ||
|  |     GPTModel, | ||
|  |     text_to_token_ids, | ||
|  |     token_ids_to_text, | ||
|  | ) | ||
|  | 
 | ||
|  | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|  | 
 | ||
|  | 
 | ||
|  | def get_model_and_tokenizer(): | ||
|  |     """
 | ||
|  |     Code to load a GPT-2 model with finetuned weights generated in chapter 7. | ||
|  |     This requires that you run the code in chapter 7 first, which generates the necessary gpt2-medium355M-sft.pth file. | ||
|  |     """
 | ||
|  | 
 | ||
|  |     GPT_CONFIG_355M = { | ||
|  |         "vocab_size": 50257,     # Vocabulary size | ||
|  |         "context_length": 1024,  # Shortened context length (orig: 1024) | ||
|  |         "emb_dim": 1024,         # Embedding dimension | ||
|  |         "n_heads": 16,           # Number of attention heads | ||
|  |         "n_layers": 24,          # Number of layers | ||
|  |         "drop_rate": 0.0,        # Dropout rate | ||
|  |         "qkv_bias": True         # Query-key-value bias | ||
|  |     } | ||
|  | 
 | ||
|  |     tokenizer = tiktoken.get_encoding("gpt2") | ||
|  | 
 | ||
|  |     model_path = Path("..") / "01_main-chapter-code" / "gpt2-medium355M-sft.pth" | ||
|  |     if not model_path.exists(): | ||
|  |         print( | ||
|  |             f"Could not find the {model_path} file. Please run the chapter 7 code " | ||
|  |             " (ch07.ipynb) to generate the gpt2-medium355M-sft.pt file." | ||
|  |         ) | ||
|  |         sys.exit() | ||
|  | 
 | ||
|  |     checkpoint = torch.load(model_path, weights_only=True) | ||
|  |     model = GPTModel(GPT_CONFIG_355M) | ||
|  |     model.load_state_dict(checkpoint) | ||
|  |     model.to(device) | ||
|  | 
 | ||
|  |     return tokenizer, model, GPT_CONFIG_355M | ||
|  | 
 | ||
|  | 
 | ||
|  | def extract_response(response_text, input_text): | ||
|  |     return response_text[len(input_text):].replace("### Response:", "").strip() | ||
|  | 
 | ||
|  | 
 | ||
|  | # Obtain the necessary tokenizer and model files for the chainlit function below | ||
|  | tokenizer, model, model_config = get_model_and_tokenizer() | ||
|  | 
 | ||
|  | 
 | ||
|  | @chainlit.on_message | ||
|  | async def main(message: chainlit.Message): | ||
|  |     """
 | ||
|  |     The main Chainlit function. | ||
|  |     """
 | ||
|  | 
 | ||
|  |     torch.manual_seed(123) | ||
|  | 
 | ||
|  |     prompt = f"""Below is an instruction that describes a task. Write a response
 | ||
|  |     that appropriately completes the request. | ||
|  | 
 | ||
|  |     ### Instruction: | ||
|  |     {message.content} | ||
|  |     """
 | ||
|  | 
 | ||
|  |     token_ids = generate(  # function uses `with torch.no_grad()` internally already | ||
|  |         model=model, | ||
|  |         idx=text_to_token_ids(prompt, tokenizer).to(device),  # The user text is provided via as `message.content` | ||
|  |         max_new_tokens=35, | ||
|  |         context_size=model_config["context_length"], | ||
|  |         eos_id=50256 | ||
|  |     ) | ||
|  | 
 | ||
|  |     text = token_ids_to_text(token_ids, tokenizer) | ||
|  |     response = extract_response(text, prompt) | ||
|  | 
 | ||
|  |     await chainlit.Message( | ||
|  |         content=f"{response}",  # This returns the model response to the interface | ||
|  |     ).send() |