2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								{
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "cells": [
							 
						 
					
						
							
								
									
										
										
										
											2024-03-19 09:26:26 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "be16f748-e12a-44a9-ad2b-81e320efdac4",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "<font size=\"1\">\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Supplementary code for \"Build a Large Language Model From Scratch\": <a href=\"https://www.manning.com/books/build-a-large-language-model-from-scratch\">https://www.manning.com/books/build-a-large-language-model-from-scratch</a> by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "</font>"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "6f678e62-7bcb-4405-86ae-dce94f494303",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "# Multi-head Attention Plus Data Loading"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
									
										
										
										
											2024-03-18 11:58:37 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "execution_count": 1,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "ac9b5847-0515-45cd-87b0-46541f6a1f79",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "torch version: 2.2.1\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2024-03-28 08:23:33 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "# NBVAL_IGNORE_OUTPUT\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-18 11:58:37 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "from importlib.metadata import version\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print(\"torch version:\", version(\"torch\"))"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "070000fc-a7b7-4c56-a2c0-a938d413a790",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "The complete chapter code is located in [ch03.ipynb](./ch03.ipynb).\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "This notebook contains the main takeaway, multihead-attention implementation (plus the data loading pipeline from chapter 2)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "3f60dc93-281d-447e-941f-aede0c7ff7fc",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## Data Loader from Chapter 2"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-18 11:58:37 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 2,
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "id": "0ed4b7db-3b47-4fd3-a4a6-5f4ed5dd166e",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import tiktoken\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "import torch\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "import torch.nn as nn\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "from torch.utils.data import Dataset, DataLoader\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "class GPTDatasetV1(Dataset):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    def __init__(self, txt, tokenizer, max_length, stride):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.tokenizer = tokenizer\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.input_ids = []\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.target_ids = []\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        # Tokenize the entire text\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-10 21:16:19 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        token_ids = self.tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        for i in range(0, len(token_ids) - max_length, stride):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            input_chunk = token_ids[i:i + max_length]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            target_chunk = token_ids[i + 1: i + max_length + 1]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            self.input_ids.append(torch.tensor(input_chunk))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            self.target_ids.append(torch.tensor(target_chunk))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    def __len__(self):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        return len(self.input_ids)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    def __getitem__(self, idx):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        return self.input_ids[idx], self.target_ids[idx]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-17 07:50:57 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "def create_dataloader(txt, batch_size=4, max_length=256, stride=128, shuffle=True):\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "    # Initialize the tokenizer\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    # Create dataset\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    # Create dataloader\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-17 07:50:57 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    return dataloader\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "with open(\"small-text-sample.txt\", \"r\", encoding=\"utf-8\") as f:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    raw_text = f.read()\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "encoded_text = tokenizer.encode(raw_text)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "vocab_size = 50257\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "output_dim = 256\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-28 19:05:06 +01:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "max_len = 1024\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "context_length = max_len\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-28 19:05:06 +01:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "token_embedding_layer = nn.Embedding(vocab_size, output_dim)\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "pos_embedding_layer = torch.nn.Embedding(context_length, output_dim)\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "max_length = 4\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-13 08:39:59 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "dataloader = create_dataloader(raw_text, batch_size=8, max_length=max_length, stride=max_length)"
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-18 11:58:37 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 3,
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "id": "664397bc-6daa-4b88-90aa-e8fc1fbd5846",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "for batch in dataloader:\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    x, y = batch\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    token_embeddings = token_embedding_layer(x)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    pos_embeddings = pos_embedding_layer(torch.arange(max_length))\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    input_embeddings = token_embeddings + pos_embeddings\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    break"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-18 11:58:37 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 4,
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "id": "d3664332-e6bb-447e-8b96-203aafde8b24",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "torch.Size([8, 4, 256])\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print(input_embeddings.shape)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "bd298bf4-e320-40c1-9084-6526d07e6d5d",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "# Multi-head Attention from Chapter 3"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "58b2297b-a001-49fd-994c-b1700866cd01",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## Variant A: Simple implementation"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-18 11:58:37 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 5,
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "id": "a44e682d-1c3c-445d-85fa-b142f89f8503",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "class CausalSelfAttention(nn.Module):\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    def __init__(self, d_in, d_out, context_length, dropout, qkv_bias=False):\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "        super().__init__()\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.d_out = d_out\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-17 07:50:57 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.W_key   = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        self.dropout = nn.Dropout(dropout) # New\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) # New\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    def forward(self, x):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        b, n_tokens, d_in = x.shape # New batch dimension b\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        keys = self.W_key(x)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        queries = self.W_query(x)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        values = self.W_value(x)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        attn_scores = queries @ keys.transpose(1, 2) # Changed transpose\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        attn_scores.masked_fill_(  # New, _ ops are in-place\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "            self.mask.bool()[:n_tokens, :n_tokens], -torch.inf) \n",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-04 18:54:43 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "        attn_weights = self.dropout(attn_weights) # New\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        context_vec = attn_weights @ values\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        return context_vec\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "class MultiHeadAttentionWrapper(nn.Module):\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "        super().__init__()\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        self.heads = nn.ModuleList(\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "            [CausalSelfAttention(d_in, d_out, context_length, dropout, qkv_bias) \n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "             for _ in range(num_heads)]\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        )\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        self.out_proj = nn.Linear(d_out*num_heads, d_out*num_heads)\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    def forward(self, x):\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        context_vec = torch.cat([head(x) for head in self.heads], dim=-1)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        return self.out_proj(context_vec)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-18 11:58:37 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 6,
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "id": "7898551e-f582-48ac-9f66-3632abe2a93f",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "context_vecs.shape: torch.Size([8, 4, 256])\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "torch.manual_seed(123)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "context_length = max_length\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "d_in = output_dim\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "num_heads=2\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "d_out = d_in // num_heads\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "mha = MultiHeadAttentionWrapper(d_in, d_out, context_length, 0.0, num_heads)\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "batch = input_embeddings\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "context_vecs = mha(batch)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print(\"context_vecs.shape:\", context_vecs.shape)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "markdown",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "id": "1e288239-5146-424d-97fe-74024ae711b9",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "## Variant B: Alternative implementation"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-18 11:58:37 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 7,
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "id": "2773c09d-c136-4372-a2be-04b58d292842",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "class MultiHeadAttention(nn.Module):\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "    def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "        super().__init__()\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-06 08:30:32 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        assert d_out % num_heads == 0, \"d_out must be divisible by num_heads\"\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.d_out = d_out\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.num_heads = num_heads\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-17 07:50:57 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        self.dropout = nn.Dropout(dropout)\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "    def forward(self, x):\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        b, num_tokens, d_in = x.shape\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        keys = self.W_key(x) # Shape: (b, num_tokens, d_out)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        queries = self.W_query(x)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        values = self.W_value(x)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        # We implicitly split the matrix by adding a `num_heads` dimension\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        values = values.view(b, num_tokens, self.num_heads, self.head_dim)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        keys = keys.transpose(1, 2)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        queries = queries.transpose(1, 2)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        values = values.transpose(1, 2)\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        # Compute scaled dot-product attention (aka self-attention) with a causal mask\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-09 17:42:25 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        \n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        # Original mask truncated to the number of tokens and converted to boolean\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        mask_bool = self.mask.bool()[:num_tokens, :num_tokens]\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-09 17:42:25 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        # Use the mask to fill attention scores\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        attn_scores.masked_fill_(mask_bool, -torch.inf)\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        \n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-14 11:58:42 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "        attn_weights = self.dropout(attn_weights)\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        # Shape: (b, num_tokens, num_heads, head_dim)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        context_vec = (attn_weights @ values).transpose(1, 2) \n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "        \n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        # Combine heads, where self.d_out = self.num_heads * self.head_dim\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-01-15 07:36:19 -06:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "        context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "        context_vec = self.out_proj(context_vec) # optional projection\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "        return context_vec"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "cell_type": "code",
							 
						 
					
						
							
								
									
										
										
										
											2024-03-18 11:58:37 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "execution_count": 8,
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								   "id": "779fdd04-0152-4308-af08-840800a7f395",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "metadata": {},
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "outputs": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "name": "stdout",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "output_type": "stream",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     "text": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								      "context_vecs.shape: torch.Size([8, 4, 256])\n"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								     ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "source": [
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "torch.manual_seed(123)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "context_length = max_length\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "d_in = output_dim\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "d_out = d_in\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-04 07:27:41 -05:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								    "mha = MultiHeadAttention(d_in, d_out, context_length, 0.0, num_heads=2)\n",
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "batch = input_embeddings\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "context_vecs = mha(batch)\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "\n",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "print(\"context_vecs.shape:\", context_vecs.shape)"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   ]
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 ],
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "metadata": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "kernelspec": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "display_name": "Python 3 (ipykernel)",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "language": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "name": "python3"
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								  "language_info": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "codemirror_mode": {
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "name": "ipython",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								    "version": 3
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "file_extension": ".py",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "mimetype": "text/x-python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "name": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "nbconvert_exporter": "python",
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								   "pygments_lexer": "ipython3",
							 
						 
					
						
							
								
									
										
										
										
											2024-04-10 21:16:19 -04:00 
										
									 
								 
							 
							
								
									
										 
								
							 
							
								 
							
							
								   "version": "3.10.10"
							 
						 
					
						
							
								
									
										
										
										
											2023-12-09 17:13:56 -06:00 
										
									 
								 
							 
							
								
							 
							
								 
							
							
								  }
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 },
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat": 4,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								 "nbformat_minor": 5
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							
							
								}