mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-07-27 19:03:47 +00:00
148 lines
5.6 KiB
Python
148 lines
5.6 KiB
Python
![]() |
"""
|
|||
|
Byte pair encoding utilities
|
|||
|
|
|||
|
Code from https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|||
|
|
|||
|
Modified MIT License
|
|||
|
|
|||
|
Software Copyright (c) 2019 OpenAI
|
|||
|
|
|||
|
We don’t claim ownership of the content you create with GPT-2, so it is yours to do with as you please.
|
|||
|
We only ask that you use GPT-2 responsibly and clearly indicate your content was created using GPT-2.
|
|||
|
|
|||
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
|||
|
associated documentation files (the "Software"), to deal in the Software without restriction,
|
|||
|
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|||
|
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
|
|||
|
subject to the following conditions:
|
|||
|
|
|||
|
The above copyright notice and this permission notice shall be included
|
|||
|
in all copies or substantial portions of the Software.
|
|||
|
The above copyright notice and this permission notice need not be included
|
|||
|
with content created by the Software.
|
|||
|
|
|||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
|||
|
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|||
|
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|||
|
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
|
|||
|
OR OTHER DEALINGS IN THE SOFTWARE.
|
|||
|
|
|||
|
|
|||
|
"""
|
|||
|
|
|||
|
import os
|
|||
|
import json
|
|||
|
import regex as re
|
|||
|
from functools import lru_cache
|
|||
|
|
|||
|
@lru_cache()
|
|||
|
def bytes_to_unicode():
|
|||
|
"""
|
|||
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|||
|
The reversible bpe codes work on unicode strings.
|
|||
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|||
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|||
|
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
|||
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|||
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|||
|
"""
|
|||
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|||
|
cs = bs[:]
|
|||
|
n = 0
|
|||
|
for b in range(2**8):
|
|||
|
if b not in bs:
|
|||
|
bs.append(b)
|
|||
|
cs.append(2**8+n)
|
|||
|
n += 1
|
|||
|
cs = [chr(n) for n in cs]
|
|||
|
return dict(zip(bs, cs))
|
|||
|
|
|||
|
def get_pairs(word):
|
|||
|
"""Return set of symbol pairs in a word.
|
|||
|
|
|||
|
Word is represented as tuple of symbols (symbols being variable-length strings).
|
|||
|
"""
|
|||
|
pairs = set()
|
|||
|
prev_char = word[0]
|
|||
|
for char in word[1:]:
|
|||
|
pairs.add((prev_char, char))
|
|||
|
prev_char = char
|
|||
|
return pairs
|
|||
|
|
|||
|
class Encoder:
|
|||
|
def __init__(self, encoder, bpe_merges, errors='replace'):
|
|||
|
self.encoder = encoder
|
|||
|
self.decoder = {v:k for k,v in self.encoder.items()}
|
|||
|
self.errors = errors # how to handle errors in decoding
|
|||
|
self.byte_encoder = bytes_to_unicode()
|
|||
|
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
|
|||
|
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
|||
|
self.cache = {}
|
|||
|
|
|||
|
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
|||
|
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
|||
|
|
|||
|
def bpe(self, token):
|
|||
|
if token in self.cache:
|
|||
|
return self.cache[token]
|
|||
|
word = tuple(token)
|
|||
|
pairs = get_pairs(word)
|
|||
|
|
|||
|
if not pairs:
|
|||
|
return token
|
|||
|
|
|||
|
while True:
|
|||
|
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
|||
|
if bigram not in self.bpe_ranks:
|
|||
|
break
|
|||
|
first, second = bigram
|
|||
|
new_word = []
|
|||
|
i = 0
|
|||
|
while i < len(word):
|
|||
|
try:
|
|||
|
j = word.index(first, i)
|
|||
|
new_word.extend(word[i:j])
|
|||
|
i = j
|
|||
|
except:
|
|||
|
new_word.extend(word[i:])
|
|||
|
break
|
|||
|
|
|||
|
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
|||
|
new_word.append(first+second)
|
|||
|
i += 2
|
|||
|
else:
|
|||
|
new_word.append(word[i])
|
|||
|
i += 1
|
|||
|
new_word = tuple(new_word)
|
|||
|
word = new_word
|
|||
|
if len(word) == 1:
|
|||
|
break
|
|||
|
else:
|
|||
|
pairs = get_pairs(word)
|
|||
|
word = ' '.join(word)
|
|||
|
self.cache[token] = word
|
|||
|
return word
|
|||
|
|
|||
|
def encode(self, text):
|
|||
|
bpe_tokens = []
|
|||
|
for token in re.findall(self.pat, text):
|
|||
|
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
|||
|
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
|||
|
return bpe_tokens
|
|||
|
|
|||
|
def decode(self, tokens):
|
|||
|
text = ''.join([self.decoder[token] for token in tokens])
|
|||
|
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
|
|||
|
return text
|
|||
|
|
|||
|
def get_encoder(model_name, models_dir):
|
|||
|
with open(os.path.join(models_dir, model_name, 'encoder.json'), 'r') as f:
|
|||
|
encoder = json.load(f)
|
|||
|
with open(os.path.join(models_dir, model_name, 'vocab.bpe'), 'r', encoding="utf-8") as f:
|
|||
|
bpe_data = f.read()
|
|||
|
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
|
|||
|
return Encoder(
|
|||
|
encoder=encoder,
|
|||
|
bpe_merges=bpe_merges,
|
|||
|
)
|