| 
									
										
										
										
											2024-09-21 18:33:00 -07:00
										 |  |  | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | 
					
						
							|  |  |  | # Source for "Build a Large Language Model From Scratch" | 
					
						
							|  |  |  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | 
					
						
							|  |  |  | # Code: https://github.com/rasbt/LLMs-from-scratch | 
					
						
							|  |  |  | # | 
					
						
							|  |  |  | # This file collects all the relevant code that we covered thus far | 
					
						
							|  |  |  | # throughout Chapters 2-5. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import json | 
					
						
							|  |  |  | import os | 
					
						
							|  |  |  | import urllib | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | import tensorflow as tf | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import torch.nn as nn | 
					
						
							|  |  |  | from tqdm import tqdm | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 3 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | class MultiHeadAttention(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         assert d_out % num_heads == 0, "d_out must be divisible by n_heads" | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.d_out = d_out | 
					
						
							|  |  |  |         self.num_heads = num_heads | 
					
						
							|  |  |  |         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) | 
					
						
							|  |  |  |         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) | 
					
						
							|  |  |  |         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) | 
					
						
							|  |  |  |         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs | 
					
						
							|  |  |  |         self.dropout = nn.Dropout(dropout) | 
					
						
							|  |  |  |         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         b, num_tokens, d_in = x.shape | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out) | 
					
						
							|  |  |  |         queries = self.W_query(x) | 
					
						
							|  |  |  |         values = self.W_value(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # We implicitly split the matrix by adding a `num_heads` dimension | 
					
						
							|  |  |  |         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) | 
					
						
							|  |  |  |         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) | 
					
						
							|  |  |  |         values = values.view(b, num_tokens, self.num_heads, self.head_dim) | 
					
						
							|  |  |  |         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) | 
					
						
							|  |  |  |         keys = keys.transpose(1, 2) | 
					
						
							|  |  |  |         queries = queries.transpose(1, 2) | 
					
						
							|  |  |  |         values = values.transpose(1, 2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Compute scaled dot-product attention (aka self-attention) with a causal mask | 
					
						
							|  |  |  |         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Original mask truncated to the number of tokens and converted to boolean | 
					
						
							|  |  |  |         mask_bool = self.mask.bool()[:num_tokens, :num_tokens] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Use the mask to fill attention scores | 
					
						
							|  |  |  |         attn_scores.masked_fill_(mask_bool, -torch.inf) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) | 
					
						
							|  |  |  |         attn_weights = self.dropout(attn_weights) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Shape: (b, num_tokens, num_heads, head_dim) | 
					
						
							|  |  |  |         context_vec = (attn_weights @ values).transpose(1, 2) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Combine heads, where self.d_out = self.num_heads * self.head_dim | 
					
						
							|  |  |  |         context_vec = context_vec.reshape(b, num_tokens, self.d_out) | 
					
						
							|  |  |  |         context_vec = self.out_proj(context_vec)  # optional projection | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return context_vec | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 4 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | class LayerNorm(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, emb_dim): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.eps = 1e-5 | 
					
						
							|  |  |  |         self.scale = nn.Parameter(torch.ones(emb_dim)) | 
					
						
							|  |  |  |         self.shift = nn.Parameter(torch.zeros(emb_dim)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         mean = x.mean(dim=-1, keepdim=True) | 
					
						
							|  |  |  |         var = x.var(dim=-1, keepdim=True, unbiased=False) | 
					
						
							|  |  |  |         norm_x = (x - mean) / torch.sqrt(var + self.eps) | 
					
						
							|  |  |  |         return self.scale * norm_x + self.shift | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class GELU(nn.Module): | 
					
						
							|  |  |  |     def __init__(self): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         return 0.5 * x * (1 + torch.tanh( | 
					
						
							|  |  |  |             torch.sqrt(torch.tensor(2.0 / torch.pi)) * | 
					
						
							|  |  |  |             (x + 0.044715 * torch.pow(x, 3)) | 
					
						
							|  |  |  |         )) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class FeedForward(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, cfg): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.layers = nn.Sequential( | 
					
						
							|  |  |  |             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), | 
					
						
							|  |  |  |             GELU(), | 
					
						
							|  |  |  |             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         return self.layers(x) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class TransformerBlock(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, cfg): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.att = MultiHeadAttention( | 
					
						
							|  |  |  |             d_in=cfg["emb_dim"], | 
					
						
							|  |  |  |             d_out=cfg["emb_dim"], | 
					
						
							|  |  |  |             context_length=cfg["context_length"], | 
					
						
							|  |  |  |             num_heads=cfg["n_heads"], | 
					
						
							|  |  |  |             dropout=cfg["drop_rate"], | 
					
						
							|  |  |  |             qkv_bias=cfg["qkv_bias"]) | 
					
						
							|  |  |  |         self.ff = FeedForward(cfg) | 
					
						
							|  |  |  |         self.norm1 = LayerNorm(cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.norm2 = LayerNorm(cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, x): | 
					
						
							|  |  |  |         # Shortcut connection for attention block | 
					
						
							|  |  |  |         shortcut = x | 
					
						
							|  |  |  |         x = self.norm1(x) | 
					
						
							|  |  |  |         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size] | 
					
						
							|  |  |  |         x = self.drop_shortcut(x) | 
					
						
							|  |  |  |         x = x + shortcut  # Add the original input back | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Shortcut connection for feed-forward block | 
					
						
							|  |  |  |         shortcut = x | 
					
						
							|  |  |  |         x = self.norm2(x) | 
					
						
							|  |  |  |         x = self.ff(x) | 
					
						
							|  |  |  |         x = self.drop_shortcut(x) | 
					
						
							|  |  |  |         x = x + shortcut  # Add the original input back | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return x | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | class GPTModel(nn.Module): | 
					
						
							|  |  |  |     def __init__(self, cfg): | 
					
						
							|  |  |  |         super().__init__() | 
					
						
							|  |  |  |         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.drop_emb = nn.Dropout(cfg["drop_rate"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.trf_blocks = nn.Sequential( | 
					
						
							|  |  |  |             *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         self.final_norm = LayerNorm(cfg["emb_dim"]) | 
					
						
							|  |  |  |         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def forward(self, in_idx): | 
					
						
							|  |  |  |         batch_size, seq_len = in_idx.shape | 
					
						
							|  |  |  |         tok_embeds = self.tok_emb(in_idx) | 
					
						
							|  |  |  |         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) | 
					
						
							|  |  |  |         x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size] | 
					
						
							|  |  |  |         x = self.drop_emb(x) | 
					
						
							|  |  |  |         x = self.trf_blocks(x) | 
					
						
							|  |  |  |         x = self.final_norm(x) | 
					
						
							|  |  |  |         logits = self.out_head(x) | 
					
						
							|  |  |  |         return logits | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 5 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | def text_to_token_ids(text, tokenizer): | 
					
						
							|  |  |  |     encoded = tokenizer.encode(text) | 
					
						
							|  |  |  |     encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension | 
					
						
							|  |  |  |     return encoded_tensor | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def token_ids_to_text(token_ids, tokenizer): | 
					
						
							|  |  |  |     flat = token_ids.squeeze(0)  # remove batch dimension | 
					
						
							|  |  |  |     return tokenizer.decode(flat.tolist()) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def download_and_load_gpt2(model_size, models_dir): | 
					
						
							|  |  |  |     # Validate model size | 
					
						
							|  |  |  |     allowed_sizes = ("124M", "355M", "774M", "1558M") | 
					
						
							|  |  |  |     if model_size not in allowed_sizes: | 
					
						
							|  |  |  |         raise ValueError(f"Model size not in {allowed_sizes}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Define paths | 
					
						
							|  |  |  |     model_dir = os.path.join(models_dir, model_size) | 
					
						
							|  |  |  |     base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" | 
					
						
							|  |  |  |     filenames = [ | 
					
						
							|  |  |  |         "checkpoint", "encoder.json", "hparams.json", | 
					
						
							|  |  |  |         "model.ckpt.data-00000-of-00001", "model.ckpt.index", | 
					
						
							|  |  |  |         "model.ckpt.meta", "vocab.bpe" | 
					
						
							|  |  |  |     ] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Download files | 
					
						
							|  |  |  |     os.makedirs(model_dir, exist_ok=True) | 
					
						
							|  |  |  |     for filename in filenames: | 
					
						
							|  |  |  |         file_url = os.path.join(base_url, model_size, filename) | 
					
						
							|  |  |  |         file_path = os.path.join(model_dir, filename) | 
					
						
							|  |  |  |         download_file(file_url, file_path) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Load settings and params | 
					
						
							|  |  |  |     tf_ckpt_path = tf.train.latest_checkpoint(model_dir) | 
					
						
							|  |  |  |     settings = json.load(open(os.path.join(model_dir, "hparams.json"))) | 
					
						
							|  |  |  |     params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return settings, params | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def download_file(url, destination): | 
					
						
							|  |  |  |     # Send a GET request to download the file | 
					
						
							|  |  |  |     with urllib.request.urlopen(url) as response: | 
					
						
							|  |  |  |         # Get the total file size from headers, defaulting to 0 if not present | 
					
						
							|  |  |  |         file_size = int(response.headers.get("Content-Length", 0)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Check if file exists and has the same size | 
					
						
							|  |  |  |         if os.path.exists(destination): | 
					
						
							|  |  |  |             file_size_local = os.path.getsize(destination) | 
					
						
							|  |  |  |             if file_size == file_size_local: | 
					
						
							|  |  |  |                 print(f"File already exists and is up-to-date: {destination}") | 
					
						
							|  |  |  |                 return | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Define the block size for reading the file | 
					
						
							|  |  |  |         block_size = 1024  # 1 Kilobyte | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Initialize the progress bar with total file size | 
					
						
							|  |  |  |         progress_bar_description = os.path.basename(url)  # Extract filename from URL | 
					
						
							|  |  |  |         with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: | 
					
						
							|  |  |  |             # Open the destination file in binary write mode | 
					
						
							|  |  |  |             with open(destination, "wb") as file: | 
					
						
							|  |  |  |                 # Read the file in chunks and write to destination | 
					
						
							|  |  |  |                 while True: | 
					
						
							|  |  |  |                     chunk = response.read(block_size) | 
					
						
							|  |  |  |                     if not chunk: | 
					
						
							|  |  |  |                         break | 
					
						
							|  |  |  |                     file.write(chunk) | 
					
						
							|  |  |  |                     progress_bar.update(len(chunk))  # Update progress bar | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): | 
					
						
							|  |  |  |     # Initialize parameters dictionary with empty blocks for each layer | 
					
						
							|  |  |  |     params = {"blocks": [{} for _ in range(settings["n_layer"])]} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Iterate over each variable in the checkpoint | 
					
						
							|  |  |  |     for name, _ in tf.train.list_variables(ckpt_path): | 
					
						
							|  |  |  |         # Load the variable and remove singleton dimensions | 
					
						
							|  |  |  |         variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Process the variable name to extract relevant parts | 
					
						
							|  |  |  |         variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Identify the target dictionary for the variable | 
					
						
							|  |  |  |         target_dict = params | 
					
						
							|  |  |  |         if variable_name_parts[0].startswith("h"): | 
					
						
							|  |  |  |             layer_number = int(variable_name_parts[0][1:]) | 
					
						
							|  |  |  |             target_dict = params["blocks"][layer_number] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Recursively access or create nested dictionaries | 
					
						
							|  |  |  |         for key in variable_name_parts[1:-1]: | 
					
						
							|  |  |  |             target_dict = target_dict.setdefault(key, {}) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         # Assign the variable array to the last key | 
					
						
							|  |  |  |         last_key = variable_name_parts[-1] | 
					
						
							|  |  |  |         target_dict[last_key] = variable_array | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return params | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def assign(left, right): | 
					
						
							|  |  |  |     if left.shape != right.shape: | 
					
						
							|  |  |  |         raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}") | 
					
						
							|  |  |  |     return torch.nn.Parameter(torch.tensor(right)) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def load_weights_into_gpt(gpt, params): | 
					
						
							|  |  |  |     gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe']) | 
					
						
							|  |  |  |     gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for b in range(len(params["blocks"])): | 
					
						
							|  |  |  |         q_w, k_w, v_w = np.split( | 
					
						
							|  |  |  |             (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_query.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_query.weight, q_w.T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_key.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_key.weight, k_w.T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_value.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_value.weight, v_w.T) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         q_b, k_b, v_b = np.split( | 
					
						
							|  |  |  |             (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_query.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_query.bias, q_b) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_key.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_key.bias, k_b) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.W_value.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.W_value.bias, v_b) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.out_proj.weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.out_proj.weight, | 
					
						
							|  |  |  |             params["blocks"][b]["attn"]["c_proj"]["w"].T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].att.out_proj.bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].att.out_proj.bias, | 
					
						
							|  |  |  |             params["blocks"][b]["attn"]["c_proj"]["b"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[0].weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[0].weight, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_fc"]["w"].T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[0].bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[0].bias, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_fc"]["b"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[2].weight = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[2].weight, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_proj"]["w"].T) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].ff.layers[2].bias = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].ff.layers[2].bias, | 
					
						
							|  |  |  |             params["blocks"][b]["mlp"]["c_proj"]["b"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm1.scale = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm1.scale, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_1"]["g"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm1.shift = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm1.shift, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_1"]["b"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm2.scale = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm2.scale, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_2"]["g"]) | 
					
						
							|  |  |  |         gpt.trf_blocks[b].norm2.shift = assign( | 
					
						
							|  |  |  |             gpt.trf_blocks[b].norm2.shift, | 
					
						
							|  |  |  |             params["blocks"][b]["ln_2"]["b"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"]) | 
					
						
							|  |  |  |     gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"]) | 
					
						
							|  |  |  |     gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"]) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | # Chapter 6 | 
					
						
							|  |  |  | ##################################### | 
					
						
							|  |  |  | def classify_review(text, model, tokenizer, device, max_length=None, pad_token_id=50256): | 
					
						
							|  |  |  |     model.eval() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Prepare inputs to the model | 
					
						
							|  |  |  |     input_ids = tokenizer.encode(text) | 
					
						
							| 
									
										
										
										
											2024-09-25 19:54:36 -05:00
										 |  |  |     supported_context_length = model.pos_emb.weight.shape[0] | 
					
						
							| 
									
										
										
										
											2024-09-21 18:33:00 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # Truncate sequences if they too long | 
					
						
							|  |  |  |     input_ids = input_ids[:min(max_length, supported_context_length)] | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Pad sequences to the longest sequence | 
					
						
							|  |  |  |     input_ids += [pad_token_id] * (max_length - len(input_ids)) | 
					
						
							|  |  |  |     input_tensor = torch.tensor(input_ids, device=device).unsqueeze(0)  # add batch dimension | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Model inference | 
					
						
							|  |  |  |     with torch.no_grad(): | 
					
						
							|  |  |  |         logits = model(input_tensor.to(device))[:, -1, :]  # Logits of the last output token | 
					
						
							|  |  |  |     predicted_label = torch.argmax(logits, dim=-1).item() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # Return the classified result | 
					
						
							|  |  |  |     return "spam" if predicted_label == 1 else "not spam" |