mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 09:50:23 +00:00 
			
		
		
		
	
		
			
	
	
		
			100 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			100 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | ||
|  | # Source for "Build a Large Language Model From Scratch" | ||
|  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | ||
|  | # Code: https://github.com/rasbt/LLMs-from-scratch | ||
|  | 
 | ||
|  | 
 | ||
|  | import os | ||
|  | import requests | ||
|  | import json | ||
|  | import numpy as np | ||
|  | import tensorflow as tf | ||
|  | from tqdm import tqdm | ||
|  | 
 | ||
|  | 
 | ||
|  | def download_and_load_gpt2(model_size, models_dir): | ||
|  |     # Validate model size | ||
|  |     allowed_sizes = ("124M", "355M", "774M", "1558M") | ||
|  |     if model_size not in allowed_sizes: | ||
|  |         raise ValueError(f"Model size not in {allowed_sizes}") | ||
|  | 
 | ||
|  |     # Define paths | ||
|  |     model_dir = os.path.join(models_dir, model_size) | ||
|  |     base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" | ||
|  |     filenames = [ | ||
|  |         "checkpoint", "encoder.json", "hparams.json", | ||
|  |         "model.ckpt.data-00000-of-00001", "model.ckpt.index", | ||
|  |         "model.ckpt.meta", "vocab.bpe" | ||
|  |     ] | ||
|  | 
 | ||
|  |     # Download files | ||
|  |     os.makedirs(model_dir, exist_ok=True) | ||
|  |     for filename in filenames: | ||
|  |         file_url = os.path.join(base_url, model_size, filename) | ||
|  |         file_path = os.path.join(model_dir, filename) | ||
|  |         download_file(file_url, file_path) | ||
|  | 
 | ||
|  |     # Load settings and params | ||
|  |     tf_ckpt_path = tf.train.latest_checkpoint(model_dir) | ||
|  |     settings = json.load(open(os.path.join(model_dir, "hparams.json"))) | ||
|  |     params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) | ||
|  | 
 | ||
|  |     return settings, params | ||
|  | 
 | ||
|  | 
 | ||
|  | def download_file(url, destination): | ||
|  |     # Send a GET request to download the file in streaming mode | ||
|  |     response = requests.get(url, stream=True) | ||
|  | 
 | ||
|  |     # Get the total file size from headers, defaulting to 0 if not present | ||
|  |     file_size = int(response.headers.get("content-length", 0)) | ||
|  | 
 | ||
|  |     # Check if file exists and has the same size | ||
|  |     if os.path.exists(destination): | ||
|  |         file_size_local = os.path.getsize(destination) | ||
|  |         if file_size == file_size_local: | ||
|  |             print(f"File already exists and is up-to-date: {destination}") | ||
|  |             return | ||
|  | 
 | ||
|  |     # Define the block size for reading the file | ||
|  |     block_size = 1024  # 1 Kilobyte | ||
|  | 
 | ||
|  |     # Initialize the progress bar with total file size | ||
|  |     progress_bar_description = url.split("/")[-1]  # Extract filename from URL | ||
|  |     with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: | ||
|  |         # Open the destination file in binary write mode | ||
|  |         with open(destination, "wb") as file: | ||
|  |             # Iterate over the file data in chunks | ||
|  |             for chunk in response.iter_content(block_size): | ||
|  |                 progress_bar.update(len(chunk))  # Update progress bar | ||
|  |                 file.write(chunk)  # Write the chunk to the file | ||
|  | 
 | ||
|  | 
 | ||
|  | def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): | ||
|  |     # Initialize parameters dictionary with empty blocks for each layer | ||
|  |     params = {"blocks": [{} for _ in range(settings["n_layer"])]} | ||
|  | 
 | ||
|  |     # Iterate over each variable in the checkpoint | ||
|  |     for name, _ in tf.train.list_variables(ckpt_path): | ||
|  |         # Load the variable and remove singleton dimensions | ||
|  |         variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) | ||
|  | 
 | ||
|  |         # Process the variable name to extract relevant parts | ||
|  |         variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix | ||
|  | 
 | ||
|  |         # Identify the target dictionary for the variable | ||
|  |         target_dict = params | ||
|  |         if variable_name_parts[0].startswith("h"): | ||
|  |             layer_number = int(variable_name_parts[0][1:]) | ||
|  |             target_dict = params["blocks"][layer_number] | ||
|  | 
 | ||
|  |         # Recursively access or create nested dictionaries | ||
|  |         for key in variable_name_parts[1:-1]: | ||
|  |             target_dict = target_dict.setdefault(key, {}) | ||
|  | 
 | ||
|  |         # Assign the variable array to the last key | ||
|  |         last_key = variable_name_parts[-1] | ||
|  |         target_dict[last_key] = variable_array | ||
|  | 
 | ||
|  |     return params |