mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-09 17:23:06 +00:00
255 lines
9.4 KiB
Python
255 lines
9.4 KiB
Python
![]() |
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||
|
# Source for "Build a Large Language Model From Scratch"
|
||
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||
|
|
||
|
|
||
|
import urllib.request
|
||
|
import zipfile
|
||
|
import os
|
||
|
from pathlib import Path
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
from torch.utils.data import Dataset
|
||
|
import torch
|
||
|
import pandas as pd
|
||
|
|
||
|
|
||
|
def download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path):
|
||
|
if data_file_path.exists():
|
||
|
print(f"{data_file_path} already exists. Skipping download and extraction.")
|
||
|
return
|
||
|
|
||
|
# Downloading the file
|
||
|
with urllib.request.urlopen(url) as response:
|
||
|
with open(zip_path, "wb") as out_file:
|
||
|
out_file.write(response.read())
|
||
|
|
||
|
# Unzipping the file
|
||
|
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
||
|
zip_ref.extractall(extracted_path)
|
||
|
|
||
|
# Add .tsv file extension
|
||
|
original_file_path = Path(extracted_path) / "SMSSpamCollection"
|
||
|
os.rename(original_file_path, data_file_path)
|
||
|
print(f"File downloaded and saved as {data_file_path}")
|
||
|
|
||
|
|
||
|
def create_balanced_dataset(df):
|
||
|
|
||
|
# Count the instances of "spam"
|
||
|
num_spam = df[df["Label"] == "spam"].shape[0]
|
||
|
|
||
|
# Randomly sample "ham" instances to match the number of "spam" instances
|
||
|
ham_subset = df[df["Label"] == "ham"].sample(num_spam, random_state=123)
|
||
|
|
||
|
# Combine ham "subset" with "spam"
|
||
|
balanced_df = pd.concat([ham_subset, df[df["Label"] == "spam"]])
|
||
|
|
||
|
return balanced_df
|
||
|
|
||
|
|
||
|
def random_split(df, train_frac, validation_frac):
|
||
|
# Shuffle the entire DataFrame
|
||
|
df = df.sample(frac=1, random_state=123).reset_index(drop=True)
|
||
|
|
||
|
# Calculate split indices
|
||
|
train_end = int(len(df) * train_frac)
|
||
|
validation_end = train_end + int(len(df) * validation_frac)
|
||
|
|
||
|
# Split the DataFrame
|
||
|
train_df = df[:train_end]
|
||
|
validation_df = df[train_end:validation_end]
|
||
|
test_df = df[validation_end:]
|
||
|
|
||
|
return train_df, validation_df, test_df
|
||
|
|
||
|
|
||
|
class SpamDataset(Dataset):
|
||
|
def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256):
|
||
|
self.data = pd.read_csv(csv_file)
|
||
|
|
||
|
# Pre-tokenize texts
|
||
|
self.encoded_texts = [
|
||
|
tokenizer.encode(text) for text in self.data["Text"]
|
||
|
]
|
||
|
|
||
|
if max_length is None:
|
||
|
self.max_length = self._longest_encoded_length()
|
||
|
else:
|
||
|
self.max_length = max_length
|
||
|
# Truncate sequences if they are longer than max_length
|
||
|
self.encoded_texts = [
|
||
|
encoded_text[:self.max_length]
|
||
|
for encoded_text in self.encoded_texts
|
||
|
]
|
||
|
|
||
|
# Pad sequences to the longest sequence
|
||
|
self.encoded_texts = [
|
||
|
encoded_text + [pad_token_id] * (self.max_length - len(encoded_text))
|
||
|
for encoded_text in self.encoded_texts
|
||
|
]
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
encoded = self.encoded_texts[index]
|
||
|
label = self.data.iloc[index]["Label"]
|
||
|
return (
|
||
|
torch.tensor(encoded, dtype=torch.long),
|
||
|
torch.tensor(label, dtype=torch.long)
|
||
|
)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.data)
|
||
|
|
||
|
def _longest_encoded_length(self):
|
||
|
max_length = 0
|
||
|
for encoded_text in self.encoded_texts:
|
||
|
encoded_length = len(encoded_text)
|
||
|
if encoded_length > max_length:
|
||
|
max_length = encoded_length
|
||
|
return max_length
|
||
|
# Note: A more pythonic version to implement this method
|
||
|
# is the following, which is also used in the next chapter:
|
||
|
# return max(len(encoded_text) for encoded_text in self.encoded_texts)
|
||
|
|
||
|
|
||
|
def calc_accuracy_loader(data_loader, model, device, num_batches=None):
|
||
|
model.eval()
|
||
|
correct_predictions, num_examples = 0, 0
|
||
|
|
||
|
if num_batches is None:
|
||
|
num_batches = len(data_loader)
|
||
|
else:
|
||
|
num_batches = min(num_batches, len(data_loader))
|
||
|
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||
|
if i < num_batches:
|
||
|
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
logits = model(input_batch)[:, -1, :] # Logits of last output token
|
||
|
predicted_labels = torch.argmax(logits, dim=-1)
|
||
|
|
||
|
num_examples += predicted_labels.shape[0]
|
||
|
correct_predictions += (predicted_labels == target_batch).sum().item()
|
||
|
else:
|
||
|
break
|
||
|
return correct_predictions / num_examples
|
||
|
|
||
|
|
||
|
def calc_loss_batch(input_batch, target_batch, model, device):
|
||
|
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||
|
logits = model(input_batch)[:, -1, :] # Logits of last output token
|
||
|
loss = torch.nn.functional.cross_entropy(logits, target_batch)
|
||
|
return loss
|
||
|
|
||
|
|
||
|
def calc_loss_loader(data_loader, model, device, num_batches=None):
|
||
|
total_loss = 0.
|
||
|
if len(data_loader) == 0:
|
||
|
return float("nan")
|
||
|
elif num_batches is None:
|
||
|
num_batches = len(data_loader)
|
||
|
else:
|
||
|
# Reduce the number of batches to match the total number of batches in the data loader
|
||
|
# if num_batches exceeds the number of batches in the data loader
|
||
|
num_batches = min(num_batches, len(data_loader))
|
||
|
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||
|
if i < num_batches:
|
||
|
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
||
|
total_loss += loss.item()
|
||
|
else:
|
||
|
break
|
||
|
return total_loss / num_batches
|
||
|
|
||
|
|
||
|
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
|
||
|
model.eval()
|
||
|
with torch.no_grad():
|
||
|
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
|
||
|
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
|
||
|
model.train()
|
||
|
return train_loss, val_loss
|
||
|
|
||
|
|
||
|
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
|
||
|
eval_freq, eval_iter):
|
||
|
# Initialize lists to track losses and examples seen
|
||
|
train_losses, val_losses, train_accs, val_accs = [], [], [], []
|
||
|
examples_seen, global_step = 0, -1
|
||
|
|
||
|
# Main training loop
|
||
|
for epoch in range(num_epochs):
|
||
|
model.train() # Set model to training mode
|
||
|
|
||
|
for input_batch, target_batch in train_loader:
|
||
|
optimizer.zero_grad() # Reset loss gradients from previous batch iteration
|
||
|
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
||
|
loss.backward() # Calculate loss gradients
|
||
|
optimizer.step() # Update model weights using loss gradients
|
||
|
examples_seen += input_batch.shape[0] # New: track examples instead of tokens
|
||
|
global_step += 1
|
||
|
|
||
|
# Optional evaluation step
|
||
|
if global_step % eval_freq == 0:
|
||
|
train_loss, val_loss = evaluate_model(
|
||
|
model, train_loader, val_loader, device, eval_iter)
|
||
|
train_losses.append(train_loss)
|
||
|
val_losses.append(val_loss)
|
||
|
print(f"Ep {epoch+1} (Step {global_step:06d}): "
|
||
|
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
|
||
|
|
||
|
# Calculate accuracy after each epoch
|
||
|
train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter)
|
||
|
val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter)
|
||
|
print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
|
||
|
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
|
||
|
train_accs.append(train_accuracy)
|
||
|
val_accs.append(val_accuracy)
|
||
|
|
||
|
return train_losses, val_losses, train_accs, val_accs, examples_seen
|
||
|
|
||
|
|
||
|
def plot_values(epochs_seen, examples_seen, train_values, val_values, label="loss"):
|
||
|
fig, ax1 = plt.subplots(figsize=(5, 3))
|
||
|
|
||
|
# Plot training and validation loss against epochs
|
||
|
ax1.plot(epochs_seen, train_values, label=f"Training {label}")
|
||
|
ax1.plot(epochs_seen, val_values, linestyle="-.", label=f"Validation {label}")
|
||
|
ax1.set_xlabel("Epochs")
|
||
|
ax1.set_ylabel(label.capitalize())
|
||
|
ax1.legend()
|
||
|
|
||
|
# Create a second x-axis for examples seen
|
||
|
ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis
|
||
|
ax2.plot(examples_seen, train_values, alpha=0) # Invisible plot for aligning ticks
|
||
|
ax2.set_xlabel("Examples seen")
|
||
|
|
||
|
fig.tight_layout() # Adjust layout to make room
|
||
|
plt.savefig(f"{label}-plot.pdf")
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
def classify_review(text, model, tokenizer, device, max_length=None, pad_token_id=50256):
|
||
|
model.eval()
|
||
|
|
||
|
# Prepare inputs to the model
|
||
|
input_ids = tokenizer.encode(text)
|
||
|
supported_context_length = model.pos_emb.weight.shape[0]
|
||
|
# Note: In the book, this was originally written as pos_emb.weight.shape[1] by mistake
|
||
|
# It didn't break the code but would have caused unnecessary truncation (to 768 instead of 1024)
|
||
|
|
||
|
# Truncate sequences if they too long
|
||
|
input_ids = input_ids[:min(max_length, supported_context_length)]
|
||
|
|
||
|
# Pad sequences to the longest sequence
|
||
|
input_ids += [pad_token_id] * (max_length - len(input_ids))
|
||
|
input_tensor = torch.tensor(input_ids, device=device).unsqueeze(0) # add batch dimension
|
||
|
|
||
|
# Model inference
|
||
|
with torch.no_grad():
|
||
|
logits = model(input_tensor)[:, -1, :] # Logits of the last output token
|
||
|
predicted_label = torch.argmax(logits, dim=-1).item()
|
||
|
|
||
|
# Return the classified result
|
||
|
return "spam" if predicted_label == 1 else "not spam"
|