288 lines
11 KiB
Python
Raw Normal View History

2025-06-21 12:29:04 -05:00
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import torch
import torch.nn as nn
#####################################
# Chapter 3
#####################################
class MultiHeadAttention(nn.Module):
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False, max_seq_len=None, window_size=None):
super().__init__()
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
self.dropout = nn.Dropout(dropout)
####################################################
# NEW
self.max_seq_len = max_seq_len or context_length
self.window_size = window_size or self.max_seq_len
self.register_buffer("cache_k", None, persistent=False)
self.register_buffer("cache_v", None, persistent=False)
####################################################
def forward(self, x, use_cache=False):
b, num_tokens, d_in = x.shape
keys_new = self.W_key(x) # Shape: (b, num_tokens, d_out)
values_new = self.W_value(x)
queries = self.W_query(x)
# We implicitly split the matrix by adding a `num_heads` dimension
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
keys_new = keys_new.view(b, num_tokens, self.num_heads, self.head_dim)
values_new = values_new.view(b, num_tokens, self.num_heads, self.head_dim)
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
keys_new = keys_new.transpose(1, 2)
values_new = values_new.transpose(1, 2)
queries = queries.transpose(1, 2)
####################################################
# NEW
if use_cache:
if self.cache_k is None or self.cache_k.size(0) != b:
self.cache_k = torch.zeros(b, self.num_heads,
self.window_size, self.head_dim,
device=x.device)
self.cache_v = torch.zeros_like(self.cache_k)
self.ptr_cur = 0 # pointer to next free slot
# if incoming chunk would overflow discard oldest tokens
if self.ptr_cur + num_tokens > self.window_size:
overflow = self.ptr_cur + num_tokens - self.window_size
# shift everything left by `overflow` (cheap view-copy)
self.cache_k[:, :, :-overflow, :] = self.cache_k[:, :, overflow:, :].clone()
self.cache_v[:, :, :-overflow, :] = self.cache_v[:, :, overflow:, :].clone()
self.ptr_cur -= overflow # pointer after shift
self.cache_k[:, :, self.ptr_cur:self.ptr_cur + num_tokens, :] = keys_new
self.cache_v[:, :, self.ptr_cur:self.ptr_cur + num_tokens, :] = values_new
self.ptr_cur += num_tokens
keys = self.cache_k[:, :, :self.ptr_cur, :]
values = self.cache_v[:, :, :self.ptr_cur, :]
else:
keys, values = keys_new, values_new
self.ptr_cur = 0 # keep pointer sane if you interleave modes
####################################################
# Compute scaled dot-product attention (aka self-attention) with a causal mask
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
####################################################
# NEW
K = attn_scores.size(-1)
if num_tokens == K:
# No cache → use the prebaked triangular mask slice
causal_mask = torch.triu(torch.ones(num_tokens, K, device=x.device, dtype=torch.bool), diagonal=1)
else:
# Cached: need to offset the diagonal by (K num_tokens)
offset = K - num_tokens # number of tokens already in cache before this chunk
row_idx = torch.arange(num_tokens, device=x.device).unsqueeze(1) # (num_tokens, 1)
col_idx = torch.arange(K, device=x.device).unsqueeze(0) # (1, K)
causal_mask = row_idx + offset < col_idx # True where j > i+offset
####################################################
# Use the mask to fill attention scores
attn_scores.masked_fill_(causal_mask.unsqueeze(0).unsqueeze(0), -torch.inf)
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
attn_weights = self.dropout(attn_weights)
# Shape: (b, num_tokens, num_heads, head_dim)
context_vec = (attn_weights @ values).transpose(1, 2)
# Combine heads, where self.d_out = self.num_heads * self.head_dim
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
context_vec = self.out_proj(context_vec) # optional projection
return context_vec
####################################################
# NEW
def reset_cache(self):
self.cache_k, self.cache_v = None, None
####################################################
#####################################
# Chapter 4
#####################################
class LayerNorm(nn.Module):
def __init__(self, emb_dim):
super().__init__()
self.eps = 1e-5
self.scale = nn.Parameter(torch.ones(emb_dim))
self.shift = nn.Parameter(torch.zeros(emb_dim))
def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
var = x.var(dim=-1, keepdim=True, unbiased=False)
norm_x = (x - mean) / torch.sqrt(var + self.eps)
return self.scale * norm_x + self.shift
class GELU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return 0.5 * x * (1 + torch.tanh(
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
(x + 0.044715 * torch.pow(x, 3))
))
class FeedForward(nn.Module):
def __init__(self, cfg):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
GELU(),
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
)
def forward(self, x):
return self.layers(x)
class TransformerBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.att = MultiHeadAttention(
d_in=cfg["emb_dim"],
d_out=cfg["emb_dim"],
context_length=cfg["context_length"],
num_heads=cfg["n_heads"],
dropout=cfg["drop_rate"],
qkv_bias=cfg["qkv_bias"],
window_size=cfg["kv_window_size"] if "kv_window_size" in cfg else cfg["context_length"] # NEW
)
self.ff = FeedForward(cfg)
self.norm1 = LayerNorm(cfg["emb_dim"])
self.norm2 = LayerNorm(cfg["emb_dim"])
self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
def forward(self, x, use_cache=False):
# Shortcut connection for attention block
shortcut = x
x = self.norm1(x)
# x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
####################################################
# NEW
x = self.att(x, use_cache=use_cache)
####################################################
x = self.drop_shortcut(x)
x = x + shortcut # Add the original input back
# Shortcut connection for feed-forward block
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = self.drop_shortcut(x)
x = x + shortcut # Add the original input back
return x
class GPTModel(nn.Module):
def __init__(self, cfg):
super().__init__()
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
self.drop_emb = nn.Dropout(cfg["drop_rate"])
# self.trf_blocks = nn.Sequential(
# *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
####################################################
# NEW
self.trf_blocks = nn.ModuleList(
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
self.ptr_current_pos = 0
####################################################
self.final_norm = LayerNorm(cfg["emb_dim"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
def forward(self, in_idx, use_cache=False):
batch_size, seq_len = in_idx.shape
tok_embeds = self.tok_emb(in_idx)
# pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
####################################################
# NEW
if use_cache:
pos_ids = torch.arange(self.ptr_current_pos, self.ptr_current_pos + seq_len, device=in_idx.device, dtype=torch.long)
self.ptr_current_pos += seq_len
else:
pos_ids = torch.arange(0, seq_len, device=in_idx.device, dtype=torch.long)
pos_embeds = self.pos_emb(pos_ids).unsqueeze(0)
####################################################
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
x = self.drop_emb(x)
# x = self.trf_blocks(x)
####################################################
# NEW
for blk in self.trf_blocks:
x = blk(x, use_cache=use_cache)
####################################################
x = self.final_norm(x)
logits = self.out_head(x)
return logits
####################################################
# NEW
def reset_kv_cache(self):
for blk in self.trf_blocks:
blk.att.reset_cache()
self.ptr_current_pos = 0
####################################################
def generate_text_simple(model, idx, max_new_tokens, context_size):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# Crop current context if it exceeds the supported context size
# E.g., if LLM supports only 5 tokens, and the context size is 10
# then only the last 5 tokens are used as context
idx_cond = idx[:, -context_size:]
# Get the predictions
with torch.no_grad():
logits = model(idx_cond)
# Focus only on the last time step
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
logits = logits[:, -1, :]
# Get the idx of the vocab entry with the highest logits value
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
# Append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
return idx