241 lines
9.0 KiB
Python
Raw Normal View History

import os
import sys
import io
import nbformat
import types
import pytest
import tiktoken
def import_definitions_from_notebook(fullname, names):
"""Loads function definitions from a Jupyter notebook file into a module."""
path = os.path.join(os.path.dirname(__file__), fullname + ".ipynb")
path = os.path.normpath(path)
if not os.path.exists(path):
raise FileNotFoundError(f"Notebook file not found at: {path}")
with io.open(path, "r", encoding="utf-8") as f:
nb = nbformat.read(f, as_version=4)
mod = types.ModuleType(fullname)
sys.modules[fullname] = mod
# Execute all code cells to capture dependencies
for cell in nb.cells:
if cell.cell_type == "code":
exec(cell.source, mod.__dict__)
# Ensure required names are in module
missing_names = [name for name in names if name not in mod.__dict__]
if missing_names:
raise ImportError(f"Missing definitions in notebook: {missing_names}")
return mod
@pytest.fixture(scope="module")
def imported_module():
fullname = "bpe-from-scratch"
names = ["BPETokenizerSimple", "download_file_if_absent"]
return import_definitions_from_notebook(fullname, names)
@pytest.fixture(scope="module")
def verdict_file(imported_module):
"""Fixture to handle downloading The Verdict file."""
download_file_if_absent = getattr(imported_module, "download_file_if_absent", None)
verdict_path = download_file_if_absent(
url=(
"https://raw.githubusercontent.com/rasbt/"
"LLMs-from-scratch/main/ch02/01_main-chapter-code/"
"the-verdict.txt"
),
filename="the-verdict.txt",
search_dirs=["ch02/01_main-chapter-code/", "../01_main-chapter-code/", "."]
)
return verdict_path
@pytest.fixture(scope="module")
def gpt2_files(imported_module):
"""Fixture to handle downloading GPT-2 files."""
download_file_if_absent = getattr(imported_module, "download_file_if_absent", None)
search_directories = ["ch02/02_bonus_bytepair-encoder/gpt2_model/", "../02_bonus_bytepair-encoder/gpt2_model/", "."]
files_to_download = {
"https://openaipublic.blob.core.windows.net/gpt-2/models/124M/vocab.bpe": "vocab.bpe",
"https://openaipublic.blob.core.windows.net/gpt-2/models/124M/encoder.json": "encoder.json"
}
paths = {filename: download_file_if_absent(url, filename, search_directories)
for url, filename in files_to_download.items()}
return paths
def test_tokenizer_training(imported_module, verdict_file):
BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
tokenizer = BPETokenizerSimple()
2025-09-14 11:59:52 -05:00
with open(verdict_file, "r", encoding="utf-8") as f: # added ../01_main-chapter-code/
text = f.read()
tokenizer.train(text, vocab_size=1000, allowed_special={"<|endoftext|>"})
assert len(tokenizer.vocab) == 1000, "Tokenizer vocabulary size mismatch."
assert len(tokenizer.bpe_merges) == 742, "Tokenizer BPE merges count mismatch."
input_text = "Jack embraced beauty through art and life."
token_ids = tokenizer.encode(input_text)
assert token_ids == [424, 256, 654, 531, 302, 311, 256, 296, 97, 465, 121, 595, 841, 116, 287, 466, 256, 326, 972, 46], "Token IDs do not match expected output."
assert tokenizer.decode(token_ids) == input_text, "Decoded text does not match the original input."
tokenizer.save_vocab_and_merges(vocab_path="vocab.json", bpe_merges_path="bpe_merges.txt")
tokenizer2 = BPETokenizerSimple()
tokenizer2.load_vocab_and_merges(vocab_path="vocab.json", bpe_merges_path="bpe_merges.txt")
assert tokenizer2.decode(token_ids) == input_text, "Decoded text mismatch after reloading tokenizer."
def test_gpt2_tokenizer_openai_simple(imported_module, gpt2_files):
BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
tokenizer_gpt2 = BPETokenizerSimple()
tokenizer_gpt2.load_vocab_and_merges_from_openai(
vocab_path=gpt2_files["encoder.json"], bpe_merges_path=gpt2_files["vocab.bpe"]
)
assert len(tokenizer_gpt2.vocab) == 50257, "GPT-2 tokenizer vocabulary size mismatch."
input_text = "This is some text"
token_ids = tokenizer_gpt2.encode(input_text)
assert token_ids == [1212, 318, 617, 2420], "Tokenized output does not match expected GPT-2 encoding."
def test_gpt2_tokenizer_openai_edgecases(imported_module, gpt2_files):
BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
tokenizer_gpt2 = BPETokenizerSimple()
tokenizer_gpt2.load_vocab_and_merges_from_openai(
vocab_path=gpt2_files["encoder.json"], bpe_merges_path=gpt2_files["vocab.bpe"]
)
tik_tokenizer = tiktoken.get_encoding("gpt2")
test_cases = [
("Hello,", [15496, 11]),
("Implementations", [3546, 26908, 602]),
("asdf asdfasdf a!!, @aba 9asdf90asdfk", [292, 7568, 355, 7568, 292, 7568, 257, 3228, 11, 2488, 15498, 860, 292, 7568, 3829, 292, 7568, 74]),
("Hello, world. Is this-- a test?", [15496, 11, 995, 13, 1148, 428, 438, 257, 1332, 30])
]
errors = []
for input_text, expected_tokens in test_cases:
tik_tokens = tik_tokenizer.encode(input_text)
gpt2_tokens = tokenizer_gpt2.encode(input_text)
print(f"Text: {input_text}")
print(f"Expected Tokens: {expected_tokens}")
print(f"tiktoken Output: {tik_tokens}")
print(f"BPETokenizerSimple Output: {gpt2_tokens}")
print("-" * 40)
if tik_tokens != expected_tokens:
errors.append(f"Tiktokenized output does not match expected GPT-2 encoding for '{input_text}'.\n"
f"Expected: {expected_tokens}, Got: {tik_tokens}")
if gpt2_tokens != expected_tokens:
errors.append(f"Tokenized output does not match expected GPT-2 encoding for '{input_text}'.\n"
f"Expected: {expected_tokens}, Got: {gpt2_tokens}")
if errors:
pytest.fail("\n".join(errors))
def test_gpt2_newline_and_eot_ids(imported_module, gpt2_files):
BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
tok = BPETokenizerSimple()
tok.load_vocab_and_merges_from_openai(
vocab_path=gpt2_files["encoder.json"], bpe_merges_path=gpt2_files["vocab.bpe"]
)
assert "Ċ" in tok.inverse_vocab, "Missing GPT-2 newline glyph 'Ċ' in inverse_vocab"
assert "<|endoftext|>" in tok.inverse_vocab, "Missing EOT in inverse_vocab"
assert tok.inverse_vocab["Ċ"] == 198, "Ċ must map to id 198"
assert tok.inverse_vocab["<|endoftext|>"] == 50256, "EOT must be 50256"
if "\n" not in tok.inverse_vocab:
tok.inverse_vocab["\n"] = tok.inverse_vocab["Ċ"]
assert tok.inverse_vocab["\n"] == 198, r"'\n' must map to 198 via Ċ"
assert tok.vocab[198] == "Ċ", "Don't overwrite vocab[198]; keep it 'Ċ'"
assert tok.vocab[50256] == "<|endoftext|>", "Don't map <|endoftext|> to anything else"
def test_no_eot_aliasing_and_disallowed_logic(imported_module, gpt2_files):
BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
tok = BPETokenizerSimple()
tok.load_vocab_and_merges_from_openai(
vocab_path=gpt2_files["encoder.json"], bpe_merges_path=gpt2_files["vocab.bpe"]
)
tik = tiktoken.get_encoding("gpt2")
text = "Hello<|endoftext|>\nworld"
# When not allowed, our encode should raise ValueError like tiktoken
with pytest.raises(ValueError):
tok.encode(text)
# When allowed, both tokenizers should match
ids_ours = tok.encode(text, allowed_special={"<|endoftext|>"})
ids_tik = tik.encode(text, allowed_special={"<|endoftext|>"})
assert ids_ours == ids_tik, "Mismatch vs tiktoken with EOT allowed"
@pytest.mark.parametrize(
"text",
[
"a\nb",
"a\n\nb",
"\nHello",
"Hello\n",
"a\r\nb",
],
)
def test_newline_roundtrip_and_equivalence(imported_module, gpt2_files, text):
BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
tok = BPETokenizerSimple()
tok.load_vocab_and_merges_from_openai(
vocab_path=gpt2_files["encoder.json"], bpe_merges_path=gpt2_files["vocab.bpe"]
)
tik = tiktoken.get_encoding("gpt2")
ids_ours = tok.encode(text)
ids_tik = tik.encode(text)
assert ids_ours == ids_tik, f"Mismatch vs tiktoken for: {repr(text)}"
# Each "\n" should correspond to id 198
expected_lf_count = text.count("\n")
assert ids_ours.count(198) == expected_lf_count
dec = tok.decode(ids_ours)
assert dec == text
def test_space_newline_space_patterns(imported_module, gpt2_files):
BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
tok = BPETokenizerSimple()
tok.load_vocab_and_merges_from_openai(
vocab_path=gpt2_files["encoder.json"], bpe_merges_path=gpt2_files["vocab.bpe"]
)
tik = tiktoken.get_encoding("gpt2")
samples = [
"Hello \nworld",
"Hello\n world",
]
for s in samples:
assert tok.encode(s) == tik.encode(s), f"Mismatch vs tiktoken: {repr(s)}"