add download utilities for vocab and encoder files

This commit is contained in:
rasbt 2024-01-15 17:07:55 -06:00
parent dfe2c3b46f
commit 0074c98968
2 changed files with 63 additions and 26 deletions

View File

@ -3,6 +3,9 @@ Byte pair encoding utilities
Code from https://github.com/openai/gpt-2/blob/master/src/encoder.py
And modified code (download_vocab) from
https://github.com/openai/gpt-2/blob/master/download_model.py
Modified MIT License
Software Copyright (c) 2019 OpenAI
@ -34,6 +37,8 @@ OR OTHER DEALINGS IN THE SOFTWARE.
import os
import json
import regex as re
import requests
from tqdm import tqdm
from functools import lru_cache
@lru_cache()
@ -145,4 +150,25 @@ def get_encoder(model_name, models_dir):
return Encoder(
encoder=encoder,
bpe_merges=bpe_merges,
)
)
def download_vocab():
# Modified code from
subdir = 'gpt2_model'
if not os.path.exists(subdir):
os.makedirs(subdir)
subdir = subdir.replace('\\','/') # needed for Windows
for filename in ['encoder.json', 'vocab.bpe']:
r = requests.get("https://openaipublic.blob.core.windows.net/gpt-2/models/117M" + "/" + filename, stream=True)
with open(os.path.join(subdir, filename), 'wb') as f:
file_size = int(r.headers["content-length"])
chunk_size = 1000
with tqdm(ncols=100, desc="Fetching " + filename, total=file_size, unit_scale=True) as pbar:
# 1k for chunk_size, since Ethernet packet size is around 1500 bytes
for chunk in r.iter_content(chunk_size=chunk_size):
f.write(chunk)
pbar.update(chunk_size)

View File

@ -125,22 +125,41 @@
"metadata": {},
"outputs": [],
"source": [
"from bpe_openai_gpt2 import get_encoder"
"from bpe_openai_gpt2 import get_encoder, download_vocab"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1888a7a9-9c40-4fe0-99b4-ebd20aa1ffd0",
"id": "35dd8d7c-8c12-4b68-941a-0fd05882dd45",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Fetching encoder.json: 1.04Mit [00:00, 3.03Mit/s] \n",
"Fetching vocab.bpe: 457kit [00:00, 2.36Mit/s] \n"
]
}
],
"source": [
"orig_tokenizer = get_encoder(model_name=\"gpt2\", models_dir=\".\")"
"download_vocab()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1888a7a9-9c40-4fe0-99b4-ebd20aa1ffd0",
"metadata": {},
"outputs": [],
"source": [
"orig_tokenizer = get_encoder(model_name=\"gpt2_model\", models_dir=\".\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "2740510c-a78a-4fba-ae18-2b156ba2dfef",
"metadata": {},
"outputs": [
@ -160,7 +179,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 11,
"id": "434d115e-990d-42ad-88dd-31323a96e10f",
"metadata": {},
"outputs": [
@ -188,7 +207,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 12,
"id": "5bfff386-f725-4137-9c50-e5da0c38bea0",
"metadata": {},
"outputs": [],
@ -198,7 +217,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 13,
"id": "e9077bf4-f91f-42ad-ab76-f3d89128510e",
"metadata": {},
"outputs": [
@ -216,7 +235,7 @@
"'4.33.2'"
]
},
"execution_count": 12,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@ -270,7 +289,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 16,
"id": "a61bb445-b151-4a2f-8180-d4004c503754",
"metadata": {},
"outputs": [],
@ -281,7 +300,7 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 17,
"id": "57f7c0a3-c1fd-4313-af34-68e78eb33653",
"metadata": {},
"outputs": [
@ -289,7 +308,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"4.17 ms ± 18.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
"4.12 ms ± 41.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
@ -299,7 +318,7 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 18,
"id": "036dd628-3591-46c9-a5ce-b20b105a8062",
"metadata": {},
"outputs": [
@ -307,7 +326,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"1.68 ms ± 9.31 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
"1.75 ms ± 8.5 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
]
}
],
@ -317,7 +336,7 @@
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": 19,
"id": "b9c85b58-bfbc-465e-9a7e-477e53d55c90",
"metadata": {},
"outputs": [
@ -332,7 +351,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"8.81 ms ± 51.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
"9.12 ms ± 856 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
@ -342,7 +361,7 @@
},
{
"cell_type": "code",
"execution_count": 26,
"execution_count": 20,
"id": "7117107f-22a6-46b4-a442-712d50b3ac7a",
"metadata": {},
"outputs": [
@ -350,21 +369,13 @@
"name": "stdout",
"output_type": "stream",
"text": [
"8.8 ms ± 74 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
"8.63 ms ± 247 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%timeit hf_tokenizer(raw_text, max_length=5145, truncation=True)[\"input_ids\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0bcbacd5-b64f-4186-ab12-949b9483f556",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {