remove all non-English texts and notice (#304)

* remove all non-English texts and notice

1. almost 18GB txt left after `is_english` filtered.
2. remove notice use gutenberg's strip_headers
3. after re-run get_data.py, seems all data are under `gutenberg/data/.mirror` folder.

* some improvements

* update readme

---------

Co-authored-by: rasbt <mail@sebastianraschka.com>
This commit is contained in:
TITC 2024-08-10 06:09:14 +08:00 committed by GitHub
parent f1c3d451fe
commit 09a3a73f2d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 24 additions and 5 deletions

View File

@ -82,11 +82,18 @@ Next, run the `prepare_dataset.py` script, which concatenates the (as of this wr
```bash
python prepare_dataset.py \
--data_dir gutenberg/data \
--data_dir gutenberg/data/raw \
--max_size_mb 500 \
--output_dir gutenberg_preprocessed
```
```
...
Skipping gutenberg/data/raw/PG29836_raw.txt as it does not contain primarily English text. Skipping gutenberg/data/raw/PG16527_raw.txt as it does not contain primarily English text. 100%|██████████████████████████████████████████████████████████| 57250/57250 [25:04<00:00, 38.05it/s]
42 file(s) saved in /Users/sebastian/Developer/LLMs-from-scratch/ch05/03_bonus_pretraining_on_gutenberg/gutenberg_preprocessed
```
> [!TIP]
> Note that the produced files are stored in plaintext format and are not pre-tokenized for simplicity. However, you may want to update the codes to store the dataset in a pre-tokenized form to save computation time if you are planning to use the dataset more often or train for multiple epochs. See the *Design Decisions and Improvements* at the bottom of this page for more information.

View File

@ -10,6 +10,13 @@ Script that processes the Project Gutenberg files into fewer larger files.
import argparse
import os
import re
from tqdm import tqdm
from gutenberg.src.cleanup import strip_headers
def is_english(text, threshold=0.9):
ascii_chars = sum(1 for c in text if ord(c) < 128)
return ascii_chars / len(text) > threshold
def combine_files(file_paths, target_dir, max_size_mb=500, separator="<|endoftext|>", fallback_encoding="latin1"):
@ -20,16 +27,21 @@ def combine_files(file_paths, target_dir, max_size_mb=500, separator="<|endoftex
current_size = 0
file_counter = 1
for file_path in file_paths:
for file_path in tqdm(file_paths):
try:
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
except UnicodeDecodeError:
# Attempt to read the file with a fallback encoding
print(f"Warning: UnicodeDecodeError encountered. Trying fallback encoding for {file_path}")
tqdm.write(f"Warning: UnicodeDecodeError encountered. Trying fallback encoding for {file_path}")
with open(file_path, "r", encoding=fallback_encoding) as file:
content = file.read()
if not is_english(content):
tqdm.write(f"Skipping {file_path} as it does not contain primarily English text.")
continue
content = strip_headers(content)
# Regular expression to replace multiple blank lines with a single blank line
content = re.sub(r'\n\s*\n', '\n\n', content)
estimated_size = len(content.encode("utf-8"))
@ -56,7 +68,7 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Preprocess and combine text files for pretraining")
parser.add_argument("--data_dir", type=str, default="gutenberg/data",
parser.add_argument("--data_dir", type=str, default="gutenberg/data/raw",
help="Directory containing the downloaded raw training data")
parser.add_argument("--max_size_mb", type=int, default=500,
help="The maximum file size for each concatenated file in megabytes")
@ -66,7 +78,7 @@ if __name__ == "__main__":
args = parser.parse_args()
all_files = [os.path.join(path, name) for path, subdirs, files in os.walk(args.data_dir)
for name in files if name.endswith((".txt", ".txt.utf8")) and "raw" not in path]
for name in files if name.endswith((".txt", ".txt.utf8"))]
print(f"{len(all_files)} file(s) to process.")
file_counter = combine_files(all_files, args.output_dir, max_size_mb=args.max_size_mb)