mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-10-29 17:01:30 +00:00
tests and exercises
This commit is contained in:
parent
c8bcdf5206
commit
13e4282567
@ -199,8 +199,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"total_steps = len(train_loader) * n_epochs * train_loader.batch_size\n",
|
||||
"warmup_steps = int(0.1 * total_steps) # 10% warmup\n",
|
||||
"total_steps = len(train_loader) * n_epochs\n",
|
||||
"warmup_steps = int(0.2 * total_steps) # 20% warmup\n",
|
||||
"print(warmup_steps)"
|
||||
]
|
||||
},
|
||||
@ -779,7 +779,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.10.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
168
ch06/01_main-chapter-code/exercise-solutions.ipynb
Normal file
168
ch06/01_main-chapter-code/exercise-solutions.ipynb
Normal file
@ -0,0 +1,168 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ba450fb1-8a26-4894-ab7a-5d7bfefe90ce",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<font size=\"1\">\n",
|
||||
"Supplementary code for \"Build a Large Language Model From Scratch\": <a href=\"https://www.manning.com/books/build-a-large-language-model-from-scratch\">https://www.manning.com/books/build-a-large-language-model-from-scratch</a> by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
|
||||
"Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
|
||||
"</font>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "51c9672d-8d0c-470d-ac2d-1271f8ec3f14",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Chapter 6 Exercise solutions"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5fea8be3-30a1-4623-a6d7-b095c6c1092e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Exercise 6.1: Increasing the context length"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5860ba9f-2db3-4480-b96b-4be1c68981eb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can pad the inputs to the maximum number of tokens to the maximum the model supports by setting the max length to\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"max_length = 1024\n",
|
||||
"\n",
|
||||
"train_dataset = SpamDataset(base_path / \"train.csv\", max_length=max_length, tokenizer=tokenizer)\n",
|
||||
"val_dataset = SpamDataset(base_path / \"validation.csv\", max_length=max_length, tokenizer=tokenizer)\n",
|
||||
"test_dataset = SpamDataset(base_path / \"test.csv\", max_length=max_length, tokenizer=tokenizer)\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"or, equivalently, we can define the `max_length` via:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"max_length = model.pos_emb.weight.shape[0]\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"or\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"max_length = BASE_CONFIG[\"context_length\"]\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2b0f4d5d-17fd-4265-93d8-ea08a22fdaf8",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"For convenience, you can run this experiment via\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"python additional-experiments.py --context_length \"model_context_length\"\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a substantially worse test accuracy of 78.33% (versus the 95.67% in the main chapter)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5a780455-f52a-48d1-ab82-6afd40bcad8b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Exercise 6.2: Finetuning the whole model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "56aa5208-aa29-4165-a0ec-7480754e2a18",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Instead of finetuning just the final transformer block, we can finetune the entire model by removing the following lines from the code:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"for param in model.parameters():\n",
|
||||
" param.requires_grad = False\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"For convenience, you can run this experiment via\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"python additional-experiments.py --trainable_layers all\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a 1% improved test accuracy of 96.67% (versus the 95.67% in the main chapter)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2269bce3-f2b5-4a76-a692-5977c75a57b6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Exercise 6.3: Finetuning the first versus last token "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7418a629-51b6-4aa2-83b7-bc0261bc370f",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"ther than finetuning the last output token, we can finetune the first output token by changing \n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"model(input_batch)[:, -1, :]\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"to\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"model(input_batch)[:, 0, :]\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"everywhere in the code.\n",
|
||||
"\n",
|
||||
"For convenience, you can run this experiment via\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"python additional-experiments.py --trainable_token first\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a substantially worse test accuracy of 75.00% (versus the 95.67% in the main chapter)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e5e6188a-f182-4f26-b9e5-ccae3ecadae0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@ -7,7 +7,6 @@
|
||||
|
||||
|
||||
import subprocess
|
||||
import pytest
|
||||
|
||||
|
||||
def test_gpt_class_finetune():
|
||||
@ -15,4 +14,3 @@ def test_gpt_class_finetune():
|
||||
|
||||
result = subprocess.run(command, capture_output=True, text=True)
|
||||
assert result.returncode == 0, f"Script exited with errors: {result.stderr}"
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user