Add more sophisticated Qwen3 tokenizer (#729)

This commit is contained in:
Sebastian Raschka 2025-07-09 13:16:26 -05:00 committed by rasbt
parent f596aab0cb
commit 14fa50dfc8
No known key found for this signature in database
4 changed files with 142 additions and 55 deletions

View File

@ -487,21 +487,6 @@
" \"dtype\": torch.bfloat16,\n",
" } \n",
"\n",
"elif CHOOSE_MODEL == \"8B\":\n",
" QWEN3_CONFIG = {\n",
" \"vocab_size\": 151_936,\n",
" \"context_length\": 40_960,\n",
" \"emb_dim\": 4096, # 60% larger than above\n",
" \"n_heads\": 32,\n",
" \"n_layers\": 36, # 26% larger than above\n",
" \"hidden_dim\": 12288,\n",
" \"head_dim\": 128,\n",
" \"qk_norm\": True,\n",
" \"n_kv_groups\": 8,\n",
" \"rope_base\": 1_000_000.0,\n",
" \"dtype\": torch.bfloat16,\n",
" } \n",
"\n",
"elif CHOOSE_MODEL == \"14B\":\n",
" QWEN3_CONFIG = {\n",
" \"vocab_size\": 151_936,\n",

View File

@ -64,7 +64,7 @@ class Llama3Model(nn.Module):
self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
# Reusuable utilities
# Reusable utilities
cos, sin = compute_rope_params(
head_dim=cfg["emb_dim"] // cfg["n_heads"],
theta_base=cfg["rope_base"],

View File

@ -5,6 +5,7 @@
import os
import json
import re
import urllib.request
from pathlib import Path
@ -115,7 +116,7 @@ class Qwen3Model(nn.Module):
self.final_norm = RMSNorm(cfg["emb_dim"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
# Reusuable utilities
# Reusable utilities
if cfg["head_dim"] is None:
head_dim = cfg["emb_dim"] // cfg["n_heads"]
else:
@ -408,52 +409,77 @@ def load_weights_into_qwen(model, param_config, params):
model.out_head.weight = assign(model.out_head.weight, params["model.embed_tokens.weight"], "model.embed_tokens.weight")
class Qwen3Tokenizer():
def __init__(self, tokenizer_file_path="tokenizer.json",
repo_id=None, apply_chat_template=True,
add_generation_prompt=False, add_thinking=False):
class Qwen3Tokenizer:
_SPECIALS = [
"<|endoftext|>",
"<|im_start|>", "<|im_end|>",
"<|object_ref_start|>", "<|object_ref_end|>",
"<|box_start|>", "<|box_end|>",
"<|quad_start|>", "<|quad_end|>",
"<|vision_start|>", "<|vision_end|>",
"<|vision_pad|>", "<|image_pad|>", "<|video_pad|>",
]
_SPLIT_RE = re.compile(r"(<\|[^>]+?\|>)")
def __init__(self, tokenizer_file_path="tokenizer.json", repo_id=None,
apply_chat_template=True, add_generation_prompt=False, add_thinking=False):
from tokenizers import Tokenizer
self.tokenizer_file_path = tokenizer_file_path
self.apply_chat_template = apply_chat_template
self.add_generation_prompt = add_generation_prompt
self.add_thinking = add_thinking
tokenizer_file_path_obj = Path(tokenizer_file_path)
if not tokenizer_file_path_obj.is_file() and repo_id is not None:
_ = download_from_huggingface(
tok_file = Path(tokenizer_file_path)
if not tok_file.is_file() and repo_id:
download_from_huggingface(
repo_id=repo_id,
filename=str(tokenizer_file_path_obj.name),
local_dir=str(tokenizer_file_path_obj.parent.name)
filename=tok_file.name,
local_dir=str(tok_file.parent),
)
self.tokenizer = Tokenizer.from_file(tokenizer_file_path)
self._tok = Tokenizer.from_file(str(tok_file))
self._special_to_id = {t: self._tok.token_to_id(t) for t in self._SPECIALS}
def encode(self, prompt):
if self.apply_chat_template:
messages = [{"role": "user", "content": prompt}]
formatted_prompt = self.format_qwen_chat(
messages,
add_generation_prompt=self.add_generation_prompt,
add_thinking=self.add_thinking
)
self.pad_token_id = self._special_to_id.get("<|endoftext|>")
self.eos_token_id = self.pad_token_id
if repo_id and "Base" not in repo_id:
eos_token = "<|im_end|>"
else:
formatted_prompt = prompt
return self.tokenizer.encode(formatted_prompt).ids
eos_token = "<|endoftext|>"
if eos_token in self._special_to_id:
self.eos_token_id = self._special_to_id[eos_token]
def decode(self, token_ids):
return self.tokenizer.decode(token_ids, skip_special_tokens=False)
def encode(self, text, chat_wrapped=None):
if chat_wrapped is None:
chat_wrapped = self.apply_chat_template
@staticmethod
def format_qwen_chat(messages, add_generation_prompt=False, add_thinking=False):
prompt = ""
for msg in messages:
prompt += f"<|im_start|>{msg['role']}\n{msg['content']}<|im_end|>\n"
if add_generation_prompt:
prompt += "<|im_start|>assistant"
if add_thinking:
prompt += "\n" # no <think> tags
stripped = text.strip()
if stripped in self._special_to_id and "\n" not in stripped:
return [self._special_to_id[stripped]]
if chat_wrapped:
text = self._wrap_chat(text)
ids = []
for part in filter(None, self._SPLIT_RE.split(text)):
if part in self._special_to_id:
ids.append(self._special_to_id[part])
else:
prompt += "\n<think>\n\n</think>\n\n"
return prompt
ids.extend(self._tok.encode(part).ids)
return ids
def decode(self, ids):
return self._tok.decode(ids, skip_special_tokens=False)
def _wrap_chat(self, user_msg):
s = f"<|im_start|>user\n{user_msg}<|im_end|>\n"
if self.add_generation_prompt:
s += "<|im_start|>assistant"
if self.add_thinking:
s += "\n"
else:
s += "\n<think>\n\n</think>\n\n"
return s
def download_from_huggingface(repo_id, filename, local_dir, revision="main"):

View File

@ -15,6 +15,8 @@ from llms_from_scratch.qwen3 import (
from llms_from_scratch.kv_cache.qwen3 import Qwen3Model as Qwen3ModelKV
from llms_from_scratch.kv_cache.generate import generate_text_simple as generate_text_simple_cached
# from llms_from_scratch.kv_cache_batched.qwen3 import Qwen3Model as Qwen3ModelKVBatched
# from llms_from_scratch.kv_cache_batched.generate import generate_text_simple as generate_text_simple_batched
import importlib
import pytest
@ -113,7 +115,7 @@ def qwen3_weights_path(tmp_path_factory):
@pytest.mark.parametrize("ModelClass", [Qwen3Model, Qwen3ModelKV])
@pytest.mark.parametrize("generate_fn", [generate_text_simple, generate_text_simple_cached])
@pytest.mark.parametrize("generate_fn", [generate_text_simple])
def test_model_variants(ModelClass, qwen3_weights_path, generate_fn):
torch.manual_seed(123)
@ -137,7 +139,7 @@ def test_model_variants(ModelClass, qwen3_weights_path, generate_fn):
print("Encoded input text:", input_token_ids)
print("encoded_tensor.shape:", input_token_ids.shape)
out = generate_text_simple(
out = generate_fn(
model=model,
idx=input_token_ids,
max_new_tokens=5,
@ -152,6 +154,47 @@ def test_model_variants(ModelClass, qwen3_weights_path, generate_fn):
assert torch.equal(expect, out)
def test_model_KV_noKV(qwen3_weights_path):
torch.manual_seed(123)
model_KV = Qwen3ModelKV(QWEN_CONFIG_06_B)
model_KV.load_state_dict(torch.load(qwen3_weights_path))
model_KV.eval()
tokenizer = Qwen3Tokenizer(
tokenizer_file_path="tokenizer-base.json",
repo_id="rasbt/qwen3-from-scratch",
add_generation_prompt=False,
add_thinking=False
)
prompt = "Give me a short introduction to large language models."
input_token_ids = tokenizer.encode(prompt)
input_token_ids = torch.tensor([input_token_ids])
out_noKV = generate_text_simple_cached(
model=model_KV,
idx=input_token_ids,
max_new_tokens=5,
context_size=QWEN_CONFIG_06_B["context_length"]
)
del model_KV
torch.manual_seed(123)
model_noKV = Qwen3Model(QWEN_CONFIG_06_B)
model_noKV.load_state_dict(torch.load(qwen3_weights_path))
model_noKV.eval()
out_KV = generate_text_simple(
model=model_noKV,
idx=input_token_ids,
max_new_tokens=5,
context_size=QWEN_CONFIG_06_B["context_length"]
)
assert torch.equal(out_noKV, out_KV)
def test_rmsnorm_equivalence():
torch.manual_seed(42)
@ -177,13 +220,16 @@ def test_rmsnorm_equivalence():
@pytest.mark.skipif(not transformers_installed, reason="transformers not installed")
def test_tokenizer_equivalence():
from transformers import AutoTokenizer
repo_id = "Qwen/Qwen3-0.6B"
tokenizer_ref = AutoTokenizer.from_pretrained(repo_id)
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "user", "content": prompt},
]
# Reasoning model tokenizer
repo_id = "Qwen/Qwen3-0.6B"
tokenizer_ref = AutoTokenizer.from_pretrained(repo_id)
for states in ((True, True), (False, False)):
tokenizer = Qwen3Tokenizer(
tokenizer_file_path="Qwen3-0.6B/tokenizer.json",
@ -203,3 +249,33 @@ def test_tokenizer_equivalence():
output_text = tokenizer.decode(input_token_ids)
out_text_ref = tokenizer_ref.decode(input_token_ids_ref)
assert output_text == out_text_ref, states
assert tokenizer_ref.eos_token_id == tokenizer.eos_token_id
assert tokenizer_ref.pad_token_id == tokenizer.pad_token_id
# Base model tokenizer
repo_id = "Qwen/Qwen3-0.6B-Base"
tokenizer_ref = AutoTokenizer.from_pretrained(repo_id)
for states in ((True, True), (False, False)):
tokenizer = Qwen3Tokenizer(
tokenizer_file_path="Qwen3-0.6B-Base/tokenizer.json",
repo_id=repo_id,
add_generation_prompt=states[0],
add_thinking=states[1]
)
input_token_ids = tokenizer.encode(prompt)
input_token_ids_ref = tokenizer_ref.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=states[0],
enable_thinking=states[1],
)
assert input_token_ids == input_token_ids_ref, states
output_text = tokenizer.decode(input_token_ids)
out_text_ref = tokenizer_ref.decode(input_token_ids_ref)
assert output_text == out_text_ref, states
assert tokenizer_ref.eos_token_id == tokenizer.eos_token_id
assert tokenizer_ref.pad_token_id == tokenizer.pad_token_id