mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-27 18:10:39 +00:00
Add more sophisticated Qwen3 tokenizer (#729)
This commit is contained in:
parent
f596aab0cb
commit
14fa50dfc8
@ -487,21 +487,6 @@
|
||||
" \"dtype\": torch.bfloat16,\n",
|
||||
" } \n",
|
||||
"\n",
|
||||
"elif CHOOSE_MODEL == \"8B\":\n",
|
||||
" QWEN3_CONFIG = {\n",
|
||||
" \"vocab_size\": 151_936,\n",
|
||||
" \"context_length\": 40_960,\n",
|
||||
" \"emb_dim\": 4096, # 60% larger than above\n",
|
||||
" \"n_heads\": 32,\n",
|
||||
" \"n_layers\": 36, # 26% larger than above\n",
|
||||
" \"hidden_dim\": 12288,\n",
|
||||
" \"head_dim\": 128,\n",
|
||||
" \"qk_norm\": True,\n",
|
||||
" \"n_kv_groups\": 8,\n",
|
||||
" \"rope_base\": 1_000_000.0,\n",
|
||||
" \"dtype\": torch.bfloat16,\n",
|
||||
" } \n",
|
||||
"\n",
|
||||
"elif CHOOSE_MODEL == \"14B\":\n",
|
||||
" QWEN3_CONFIG = {\n",
|
||||
" \"vocab_size\": 151_936,\n",
|
||||
|
@ -64,7 +64,7 @@ class Llama3Model(nn.Module):
|
||||
self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
|
||||
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
|
||||
|
||||
# Reusuable utilities
|
||||
# Reusable utilities
|
||||
cos, sin = compute_rope_params(
|
||||
head_dim=cfg["emb_dim"] // cfg["n_heads"],
|
||||
theta_base=cfg["rope_base"],
|
||||
|
@ -5,6 +5,7 @@
|
||||
|
||||
import os
|
||||
import json
|
||||
import re
|
||||
import urllib.request
|
||||
from pathlib import Path
|
||||
|
||||
@ -115,7 +116,7 @@ class Qwen3Model(nn.Module):
|
||||
self.final_norm = RMSNorm(cfg["emb_dim"])
|
||||
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
|
||||
|
||||
# Reusuable utilities
|
||||
# Reusable utilities
|
||||
if cfg["head_dim"] is None:
|
||||
head_dim = cfg["emb_dim"] // cfg["n_heads"]
|
||||
else:
|
||||
@ -408,52 +409,77 @@ def load_weights_into_qwen(model, param_config, params):
|
||||
model.out_head.weight = assign(model.out_head.weight, params["model.embed_tokens.weight"], "model.embed_tokens.weight")
|
||||
|
||||
|
||||
class Qwen3Tokenizer():
|
||||
def __init__(self, tokenizer_file_path="tokenizer.json",
|
||||
repo_id=None, apply_chat_template=True,
|
||||
add_generation_prompt=False, add_thinking=False):
|
||||
class Qwen3Tokenizer:
|
||||
_SPECIALS = [
|
||||
"<|endoftext|>",
|
||||
"<|im_start|>", "<|im_end|>",
|
||||
"<|object_ref_start|>", "<|object_ref_end|>",
|
||||
"<|box_start|>", "<|box_end|>",
|
||||
"<|quad_start|>", "<|quad_end|>",
|
||||
"<|vision_start|>", "<|vision_end|>",
|
||||
"<|vision_pad|>", "<|image_pad|>", "<|video_pad|>",
|
||||
]
|
||||
_SPLIT_RE = re.compile(r"(<\|[^>]+?\|>)")
|
||||
|
||||
def __init__(self, tokenizer_file_path="tokenizer.json", repo_id=None,
|
||||
apply_chat_template=True, add_generation_prompt=False, add_thinking=False):
|
||||
from tokenizers import Tokenizer
|
||||
self.tokenizer_file_path = tokenizer_file_path
|
||||
|
||||
self.apply_chat_template = apply_chat_template
|
||||
self.add_generation_prompt = add_generation_prompt
|
||||
self.add_thinking = add_thinking
|
||||
|
||||
tokenizer_file_path_obj = Path(tokenizer_file_path)
|
||||
if not tokenizer_file_path_obj.is_file() and repo_id is not None:
|
||||
_ = download_from_huggingface(
|
||||
tok_file = Path(tokenizer_file_path)
|
||||
if not tok_file.is_file() and repo_id:
|
||||
download_from_huggingface(
|
||||
repo_id=repo_id,
|
||||
filename=str(tokenizer_file_path_obj.name),
|
||||
local_dir=str(tokenizer_file_path_obj.parent.name)
|
||||
filename=tok_file.name,
|
||||
local_dir=str(tok_file.parent),
|
||||
)
|
||||
self.tokenizer = Tokenizer.from_file(tokenizer_file_path)
|
||||
self._tok = Tokenizer.from_file(str(tok_file))
|
||||
self._special_to_id = {t: self._tok.token_to_id(t) for t in self._SPECIALS}
|
||||
|
||||
def encode(self, prompt):
|
||||
if self.apply_chat_template:
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
formatted_prompt = self.format_qwen_chat(
|
||||
messages,
|
||||
add_generation_prompt=self.add_generation_prompt,
|
||||
add_thinking=self.add_thinking
|
||||
)
|
||||
self.pad_token_id = self._special_to_id.get("<|endoftext|>")
|
||||
self.eos_token_id = self.pad_token_id
|
||||
|
||||
if repo_id and "Base" not in repo_id:
|
||||
eos_token = "<|im_end|>"
|
||||
else:
|
||||
formatted_prompt = prompt
|
||||
return self.tokenizer.encode(formatted_prompt).ids
|
||||
eos_token = "<|endoftext|>"
|
||||
if eos_token in self._special_to_id:
|
||||
self.eos_token_id = self._special_to_id[eos_token]
|
||||
|
||||
def decode(self, token_ids):
|
||||
return self.tokenizer.decode(token_ids, skip_special_tokens=False)
|
||||
def encode(self, text, chat_wrapped=None):
|
||||
if chat_wrapped is None:
|
||||
chat_wrapped = self.apply_chat_template
|
||||
|
||||
@staticmethod
|
||||
def format_qwen_chat(messages, add_generation_prompt=False, add_thinking=False):
|
||||
prompt = ""
|
||||
for msg in messages:
|
||||
prompt += f"<|im_start|>{msg['role']}\n{msg['content']}<|im_end|>\n"
|
||||
if add_generation_prompt:
|
||||
prompt += "<|im_start|>assistant"
|
||||
if add_thinking:
|
||||
prompt += "\n" # no <think> tags
|
||||
stripped = text.strip()
|
||||
if stripped in self._special_to_id and "\n" not in stripped:
|
||||
return [self._special_to_id[stripped]]
|
||||
|
||||
if chat_wrapped:
|
||||
text = self._wrap_chat(text)
|
||||
|
||||
ids = []
|
||||
for part in filter(None, self._SPLIT_RE.split(text)):
|
||||
if part in self._special_to_id:
|
||||
ids.append(self._special_to_id[part])
|
||||
else:
|
||||
prompt += "\n<think>\n\n</think>\n\n"
|
||||
return prompt
|
||||
ids.extend(self._tok.encode(part).ids)
|
||||
return ids
|
||||
|
||||
def decode(self, ids):
|
||||
return self._tok.decode(ids, skip_special_tokens=False)
|
||||
|
||||
def _wrap_chat(self, user_msg):
|
||||
s = f"<|im_start|>user\n{user_msg}<|im_end|>\n"
|
||||
if self.add_generation_prompt:
|
||||
s += "<|im_start|>assistant"
|
||||
if self.add_thinking:
|
||||
s += "\n"
|
||||
else:
|
||||
s += "\n<think>\n\n</think>\n\n"
|
||||
return s
|
||||
|
||||
|
||||
def download_from_huggingface(repo_id, filename, local_dir, revision="main"):
|
||||
|
@ -15,6 +15,8 @@ from llms_from_scratch.qwen3 import (
|
||||
from llms_from_scratch.kv_cache.qwen3 import Qwen3Model as Qwen3ModelKV
|
||||
from llms_from_scratch.kv_cache.generate import generate_text_simple as generate_text_simple_cached
|
||||
|
||||
# from llms_from_scratch.kv_cache_batched.qwen3 import Qwen3Model as Qwen3ModelKVBatched
|
||||
# from llms_from_scratch.kv_cache_batched.generate import generate_text_simple as generate_text_simple_batched
|
||||
|
||||
import importlib
|
||||
import pytest
|
||||
@ -113,7 +115,7 @@ def qwen3_weights_path(tmp_path_factory):
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ModelClass", [Qwen3Model, Qwen3ModelKV])
|
||||
@pytest.mark.parametrize("generate_fn", [generate_text_simple, generate_text_simple_cached])
|
||||
@pytest.mark.parametrize("generate_fn", [generate_text_simple])
|
||||
def test_model_variants(ModelClass, qwen3_weights_path, generate_fn):
|
||||
|
||||
torch.manual_seed(123)
|
||||
@ -137,7 +139,7 @@ def test_model_variants(ModelClass, qwen3_weights_path, generate_fn):
|
||||
print("Encoded input text:", input_token_ids)
|
||||
print("encoded_tensor.shape:", input_token_ids.shape)
|
||||
|
||||
out = generate_text_simple(
|
||||
out = generate_fn(
|
||||
model=model,
|
||||
idx=input_token_ids,
|
||||
max_new_tokens=5,
|
||||
@ -152,6 +154,47 @@ def test_model_variants(ModelClass, qwen3_weights_path, generate_fn):
|
||||
assert torch.equal(expect, out)
|
||||
|
||||
|
||||
def test_model_KV_noKV(qwen3_weights_path):
|
||||
|
||||
torch.manual_seed(123)
|
||||
model_KV = Qwen3ModelKV(QWEN_CONFIG_06_B)
|
||||
model_KV.load_state_dict(torch.load(qwen3_weights_path))
|
||||
model_KV.eval()
|
||||
|
||||
tokenizer = Qwen3Tokenizer(
|
||||
tokenizer_file_path="tokenizer-base.json",
|
||||
repo_id="rasbt/qwen3-from-scratch",
|
||||
add_generation_prompt=False,
|
||||
add_thinking=False
|
||||
)
|
||||
|
||||
prompt = "Give me a short introduction to large language models."
|
||||
input_token_ids = tokenizer.encode(prompt)
|
||||
input_token_ids = torch.tensor([input_token_ids])
|
||||
|
||||
out_noKV = generate_text_simple_cached(
|
||||
model=model_KV,
|
||||
idx=input_token_ids,
|
||||
max_new_tokens=5,
|
||||
context_size=QWEN_CONFIG_06_B["context_length"]
|
||||
)
|
||||
del model_KV
|
||||
|
||||
torch.manual_seed(123)
|
||||
model_noKV = Qwen3Model(QWEN_CONFIG_06_B)
|
||||
model_noKV.load_state_dict(torch.load(qwen3_weights_path))
|
||||
model_noKV.eval()
|
||||
|
||||
out_KV = generate_text_simple(
|
||||
model=model_noKV,
|
||||
idx=input_token_ids,
|
||||
max_new_tokens=5,
|
||||
context_size=QWEN_CONFIG_06_B["context_length"]
|
||||
)
|
||||
|
||||
assert torch.equal(out_noKV, out_KV)
|
||||
|
||||
|
||||
def test_rmsnorm_equivalence():
|
||||
torch.manual_seed(42)
|
||||
|
||||
@ -177,13 +220,16 @@ def test_rmsnorm_equivalence():
|
||||
@pytest.mark.skipif(not transformers_installed, reason="transformers not installed")
|
||||
def test_tokenizer_equivalence():
|
||||
from transformers import AutoTokenizer
|
||||
repo_id = "Qwen/Qwen3-0.6B"
|
||||
tokenizer_ref = AutoTokenizer.from_pretrained(repo_id)
|
||||
|
||||
prompt = "Give me a short introduction to large language models."
|
||||
messages = [
|
||||
{"role": "user", "content": prompt},
|
||||
]
|
||||
|
||||
# Reasoning model tokenizer
|
||||
repo_id = "Qwen/Qwen3-0.6B"
|
||||
tokenizer_ref = AutoTokenizer.from_pretrained(repo_id)
|
||||
|
||||
for states in ((True, True), (False, False)):
|
||||
tokenizer = Qwen3Tokenizer(
|
||||
tokenizer_file_path="Qwen3-0.6B/tokenizer.json",
|
||||
@ -203,3 +249,33 @@ def test_tokenizer_equivalence():
|
||||
output_text = tokenizer.decode(input_token_ids)
|
||||
out_text_ref = tokenizer_ref.decode(input_token_ids_ref)
|
||||
assert output_text == out_text_ref, states
|
||||
|
||||
assert tokenizer_ref.eos_token_id == tokenizer.eos_token_id
|
||||
assert tokenizer_ref.pad_token_id == tokenizer.pad_token_id
|
||||
|
||||
# Base model tokenizer
|
||||
repo_id = "Qwen/Qwen3-0.6B-Base"
|
||||
tokenizer_ref = AutoTokenizer.from_pretrained(repo_id)
|
||||
|
||||
for states in ((True, True), (False, False)):
|
||||
tokenizer = Qwen3Tokenizer(
|
||||
tokenizer_file_path="Qwen3-0.6B-Base/tokenizer.json",
|
||||
repo_id=repo_id,
|
||||
add_generation_prompt=states[0],
|
||||
add_thinking=states[1]
|
||||
)
|
||||
input_token_ids = tokenizer.encode(prompt)
|
||||
input_token_ids_ref = tokenizer_ref.apply_chat_template(
|
||||
messages,
|
||||
tokenize=True,
|
||||
add_generation_prompt=states[0],
|
||||
enable_thinking=states[1],
|
||||
)
|
||||
assert input_token_ids == input_token_ids_ref, states
|
||||
|
||||
output_text = tokenizer.decode(input_token_ids)
|
||||
out_text_ref = tokenizer_ref.decode(input_token_ids_ref)
|
||||
assert output_text == out_text_ref, states
|
||||
|
||||
assert tokenizer_ref.eos_token_id == tokenizer.eos_token_id
|
||||
assert tokenizer_ref.pad_token_id == tokenizer.pad_token_id
|
||||
|
Loading…
x
Reference in New Issue
Block a user