mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-11-04 03:40:21 +00:00 
			
		
		
		
	update mmap section
This commit is contained in:
		
							parent
							
								
									31fb74133a
								
							
						
					
					
						commit
						3567fb656d
					
				@ -752,7 +752,7 @@
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "source": [
 | 
			
		||||
    " \n",
 | 
			
		||||
    "## 6. Using `mmap=True`"
 | 
			
		||||
    "## 6. Using `mmap=True` (recommmended)"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
@ -760,19 +760,20 @@
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "source": [
 | 
			
		||||
    "- As an intermediate or advanced `torch.load` user, you may wonder how these approaches compare to the `mmap=True` setting in PyTorch\n",
 | 
			
		||||
    "- The `mmap=True` setting in PyTorch enables memory-mapped file I/O, which allows the tensor to access data directly from disk storage, thus reducing memory usage by not loading the entire file into RAM\n",
 | 
			
		||||
    "- However, in practice, I found it to be less efficient than the sequential approaches above"
 | 
			
		||||
    "- The `mmap=True` setting in PyTorch enables memory-mapped file I/O, which allows the tensor to access data directly from disk storage, thus reducing memory usage by not loading the entire file into RAM if RAM is limited\n",
 | 
			
		||||
    "- Also, see the helpful comment by [mikaylagawarecki](https://github.com/rasbt/LLMs-from-scratch/issues/402)\n",
 | 
			
		||||
    "- At first glance, it may look less efficient than the sequential approaches above:"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 16,
 | 
			
		||||
   "execution_count": 37,
 | 
			
		||||
   "metadata": {
 | 
			
		||||
    "colab": {
 | 
			
		||||
     "base_uri": "https://localhost:8080/"
 | 
			
		||||
    },
 | 
			
		||||
    "id": "7AX3vPrpv5c_",
 | 
			
		||||
    "outputId": "e6fca10b-55c3-4e89-8674-075df5ce26e7"
 | 
			
		||||
    "id": "GKwV0AMNemuR",
 | 
			
		||||
    "outputId": "e207f2bf-5c87-498e-80fe-e8c4016ac711"
 | 
			
		||||
   },
 | 
			
		||||
   "outputs": [
 | 
			
		||||
    {
 | 
			
		||||
@ -780,63 +781,32 @@
 | 
			
		||||
     "output_type": "stream",
 | 
			
		||||
     "text": [
 | 
			
		||||
      "Maximum GPU memory allocated: 6.4 GB\n",
 | 
			
		||||
      "-> Maximum CPU memory allocated: 9.9 GB\n"
 | 
			
		||||
      "-> Maximum CPU memory allocated: 5.9 GB\n"
 | 
			
		||||
     ]
 | 
			
		||||
    }
 | 
			
		||||
   ],
 | 
			
		||||
   "source": [
 | 
			
		||||
    "def baseline_mmap():\n",
 | 
			
		||||
    "    start_memory_tracking()\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    model = GPTModel(BASE_CONFIG)  # load model on CPU\n",
 | 
			
		||||
    "def best_practices():\n",
 | 
			
		||||
    "  with torch.device(\"meta\"):\n",
 | 
			
		||||
    "      model = GPTModel(BASE_CONFIG)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "  model.load_state_dict(\n",
 | 
			
		||||
    "        torch.load(\"model.pth\", map_location=\"cpu\", weights_only=True, mmap=True)\n",
 | 
			
		||||
    "      torch.load(\"model.pth\", map_location=device, weights_only=True, mmap=True),\n",
 | 
			
		||||
    "      assign=True\n",
 | 
			
		||||
    "  )\n",
 | 
			
		||||
    "    model.to(device)  # Move model to GPU\n",
 | 
			
		||||
    "    model.eval();\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "  print_memory_usage()\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "peak_memory_used = memory_usage_in_gb(baseline_mmap)\n",
 | 
			
		||||
    "peak_memory_used = memory_usage_in_gb(best_practices)\n",
 | 
			
		||||
    "print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 19,
 | 
			
		||||
   "metadata": {
 | 
			
		||||
    "colab": {
 | 
			
		||||
     "base_uri": "https://localhost:8080/"
 | 
			
		||||
    },
 | 
			
		||||
    "id": "KUyK3QVRwmjR",
 | 
			
		||||
    "outputId": "a77c191a-2f9e-4ae5-be19-8ce128e704e9"
 | 
			
		||||
   },
 | 
			
		||||
   "outputs": [
 | 
			
		||||
    {
 | 
			
		||||
     "name": "stdout",
 | 
			
		||||
     "output_type": "stream",
 | 
			
		||||
     "text": [
 | 
			
		||||
      "Maximum GPU memory allocated: 12.8 GB\n",
 | 
			
		||||
      "-> Maximum CPU memory allocated: 7.0 GB\n"
 | 
			
		||||
     ]
 | 
			
		||||
    }
 | 
			
		||||
   ],
 | 
			
		||||
   "cell_type": "markdown",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "source": [
 | 
			
		||||
    "def baseline_mmap_2():\n",
 | 
			
		||||
    "    start_memory_tracking()\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    model = GPTModel(BASE_CONFIG).to(device)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    model.load_state_dict(\n",
 | 
			
		||||
    "        torch.load(\"model.pth\", map_location=device, weights_only=True, mmap=True)\n",
 | 
			
		||||
    "    )\n",
 | 
			
		||||
    "    model.eval();\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    print_memory_usage()\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "peak_memory_used = memory_usage_in_gb(baseline_mmap_2)\n",
 | 
			
		||||
    "print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")"
 | 
			
		||||
    "- The reason why the CPU RAM usage is so high is that there's enough CPU RAM available on this machine\n",
 | 
			
		||||
    "- However, if you were to run this on a machine with limited CPU RAM, the `mmap` approach would use less memory"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
@ -851,8 +821,9 @@
 | 
			
		||||
   "cell_type": "markdown",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "source": [
 | 
			
		||||
    "- This notebook is focused on simple, built-in methods for loading weights in PyTorch.\n",
 | 
			
		||||
    "- In case none of these methods work because you (1) don't have enough CPU memory for the `load_sequentially` approach and don't have enough GPU VRAM to have 2 copies of the weights in memory (the `load_sequentially_with_meta` approach), one option is to save and load each weight tensor separately:"
 | 
			
		||||
    "- This notebook is focused on simple, built-in methods for loading weights in PyTorch\n",
 | 
			
		||||
    "- The recommended approach for limited CPU memory cases is the `mmap=True` approach explained enough\n",
 | 
			
		||||
    "- Alternatively, one other option is a brute-force approach that saves and loads each weight tensor separately:"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user