mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-11-01 10:20:00 +00:00
parent
06604f4b84
commit
37db3f0913
@ -18,7 +18,10 @@ from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def notebook():
|
||||
def import_definitions_from_notebook(fullname, names):
|
||||
def import_definitions_from_notebook(notebooks):
|
||||
imported_modules = {}
|
||||
|
||||
for fullname, names in notebooks.items():
|
||||
# Get the directory of the current test file
|
||||
current_dir = os.path.dirname(__file__)
|
||||
path = os.path.join(current_dir, "..", fullname + ".ipynb")
|
||||
@ -43,14 +46,17 @@ def notebook():
|
||||
# Check for function or class definitions
|
||||
if f"def {name}" in cell_code or f"class {name}" in cell_code:
|
||||
exec(cell_code, mod.__dict__)
|
||||
return mod
|
||||
|
||||
# Specify the notebook name and functions/classes to import
|
||||
fullname = "converting-gpt-to-llama2"
|
||||
names = ["precompute_rope_params", "compute_rope", "SiLU", "RMSNorm"]
|
||||
imported_modules[fullname] = mod
|
||||
|
||||
# Import the required functions and classes from the notebook
|
||||
return import_definitions_from_notebook(fullname, names)
|
||||
return imported_modules
|
||||
|
||||
notebooks = {
|
||||
"converting-gpt-to-llama2": ["SiLU", "RMSNorm", "precompute_rope_params", "compute_rope"],
|
||||
"converting-llama2-to-llama3": ["precompute_rope_params"]
|
||||
}
|
||||
|
||||
return import_definitions_from_notebook(notebooks)
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
@ -59,6 +65,9 @@ def set_seed():
|
||||
|
||||
|
||||
def test_rope_llama2(notebook):
|
||||
|
||||
this_nb = notebook["converting-gpt-to-llama2"]
|
||||
|
||||
# Settings
|
||||
batch_size = 1
|
||||
context_len = 4096
|
||||
@ -66,15 +75,15 @@ def test_rope_llama2(notebook):
|
||||
head_dim = 16
|
||||
|
||||
# Instantiate RoPE parameters
|
||||
cos, sin = notebook.precompute_rope_params(head_dim=head_dim, context_length=context_len)
|
||||
cos, sin = this_nb.precompute_rope_params(head_dim=head_dim, context_length=context_len)
|
||||
|
||||
# Dummy query and key tensors
|
||||
queries = torch.randn(batch_size, num_heads, context_len, head_dim)
|
||||
keys = torch.randn(batch_size, num_heads, context_len, head_dim)
|
||||
|
||||
# Apply rotary position embeddings
|
||||
queries_rot = notebook.compute_rope(queries, cos, sin)
|
||||
keys_rot = notebook.compute_rope(keys, cos, sin)
|
||||
queries_rot = this_nb.compute_rope(queries, cos, sin)
|
||||
keys_rot = this_nb.compute_rope(keys, cos, sin)
|
||||
|
||||
rot_emb = LlamaRotaryEmbedding(
|
||||
dim=head_dim,
|
||||
@ -93,6 +102,10 @@ def test_rope_llama2(notebook):
|
||||
|
||||
|
||||
def test_rope_llama3(notebook):
|
||||
|
||||
nb1 = notebook["converting-gpt-to-llama2"]
|
||||
nb2 = notebook["converting-llama2-to-llama3"]
|
||||
|
||||
# Settings
|
||||
batch_size = 1
|
||||
context_len = 8192
|
||||
@ -101,19 +114,20 @@ def test_rope_llama3(notebook):
|
||||
theta_base = 50_000
|
||||
|
||||
# Instantiate RoPE parameters
|
||||
cos, sin = notebook.precompute_rope_params(
|
||||
cos, sin = nb2.precompute_rope_params(
|
||||
head_dim=head_dim,
|
||||
context_length=context_len,
|
||||
theta_base=theta_base
|
||||
)
|
||||
|
||||
# Dummy query and key tensors
|
||||
torch.manual_seed(123)
|
||||
queries = torch.randn(batch_size, num_heads, context_len, head_dim)
|
||||
keys = torch.randn(batch_size, num_heads, context_len, head_dim)
|
||||
|
||||
# Apply rotary position embeddings
|
||||
queries_rot = notebook.compute_rope(queries, cos, sin)
|
||||
keys_rot = notebook.compute_rope(keys, cos, sin)
|
||||
queries_rot = nb1.compute_rope(queries, cos, sin)
|
||||
keys_rot = nb1.compute_rope(keys, cos, sin)
|
||||
|
||||
rot_emb = LlamaRotaryEmbedding(
|
||||
dim=head_dim,
|
||||
@ -131,16 +145,83 @@ def test_rope_llama3(notebook):
|
||||
torch.testing.assert_close(queries_rot, ref_queries_rot)
|
||||
|
||||
|
||||
def test_rope_llama3_12(notebook):
|
||||
|
||||
nb1 = notebook["converting-gpt-to-llama2"]
|
||||
nb2 = notebook["converting-llama2-to-llama3"]
|
||||
|
||||
# Settings
|
||||
batch_size = 1
|
||||
context_len = 8192
|
||||
num_heads = 4
|
||||
head_dim = 16
|
||||
rope_theta = 50_000
|
||||
|
||||
rope_config = {
|
||||
"factor": 8.0,
|
||||
"low_freq_factor": 1.0,
|
||||
"high_freq_factor": 4.0,
|
||||
"original_context_length": 8192,
|
||||
}
|
||||
|
||||
# Instantiate RoPE parameters
|
||||
cos, sin = nb2.precompute_rope_params(
|
||||
head_dim=head_dim,
|
||||
theta_base=rope_theta,
|
||||
context_length=context_len,
|
||||
freq_config=rope_config,
|
||||
)
|
||||
|
||||
# Dummy query and key tensors
|
||||
torch.manual_seed(123)
|
||||
queries = torch.randn(batch_size, num_heads, context_len, head_dim)
|
||||
keys = torch.randn(batch_size, num_heads, context_len, head_dim)
|
||||
|
||||
# Apply rotary position embeddings
|
||||
queries_rot = nb1.compute_rope(queries, cos, sin)
|
||||
keys_rot = nb1.compute_rope(keys, cos, sin)
|
||||
|
||||
hf_rope_params = {
|
||||
"factor": 8.0,
|
||||
"low_freq_factor": 1.0,
|
||||
"high_freq_factor": 4.0,
|
||||
"original_max_position_embeddings": 8192,
|
||||
"rope_type": "llama3"
|
||||
}
|
||||
|
||||
class RoPEConfig:
|
||||
rope_type = "llama3"
|
||||
rope_scaling = hf_rope_params
|
||||
factor = 1.0
|
||||
dim: int = head_dim
|
||||
rope_theta = 50_000
|
||||
max_position_embeddings: int = 8192
|
||||
hidden_size = head_dim * num_heads
|
||||
num_attention_heads = num_heads
|
||||
|
||||
config = RoPEConfig()
|
||||
|
||||
rot_emb = LlamaRotaryEmbedding(config=config)
|
||||
position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
|
||||
ref_cos, ref_sin = rot_emb(queries, position_ids)
|
||||
ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)
|
||||
|
||||
torch.testing.assert_close(sin, ref_sin.squeeze(0))
|
||||
torch.testing.assert_close(cos, ref_cos.squeeze(0))
|
||||
torch.testing.assert_close(keys_rot, ref_keys_rot)
|
||||
torch.testing.assert_close(queries_rot, ref_queries_rot)
|
||||
|
||||
|
||||
def test_silu(notebook):
|
||||
example_batch = torch.randn(2, 3, 4)
|
||||
silu = notebook.SiLU()
|
||||
silu = notebook["converting-gpt-to-llama2"].SiLU()
|
||||
assert torch.allclose(silu(example_batch), torch.nn.functional.silu(example_batch))
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < "2.4", reason="Requires PyTorch 2.4 or newer")
|
||||
def test_rmsnorm(notebook):
|
||||
example_batch = torch.randn(2, 3, 4)
|
||||
rms_norm = notebook.RMSNorm(emb_dim=example_batch.shape[-1], eps=1e-5)
|
||||
rms_norm = notebook["converting-gpt-to-llama2"].RMSNorm(emb_dim=example_batch.shape[-1], eps=1e-5)
|
||||
rmsnorm_pytorch = torch.nn.RMSNorm(example_batch.shape[-1], eps=1e-5)
|
||||
|
||||
assert torch.allclose(rms_norm(example_batch), rmsnorm_pytorch(example_batch))
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user