Remove leftover instances of self.tokenizer (#201)

* Remove leftover instances of self.tokenizer

* add endoftext token
This commit is contained in:
Sebastian Raschka 2024-06-08 14:57:34 -05:00 committed by GitHub
parent 98d23751f7
commit 40ba3a4068
13 changed files with 18 additions and 23 deletions

View File

@ -24,7 +24,7 @@ class GPTDatasetV1(Dataset):
self.target_ids = []
# Tokenize the entire text
token_ids = tokenizer.encode(txt)
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):

View File

@ -28,12 +28,11 @@ from torch.utils.data import Dataset, DataLoader
class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
self.input_ids = []
self.target_ids = []
# Tokenize the entire text
token_ids = tokenizer.encode(txt)
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):

View File

@ -1920,7 +1920,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@ -248,7 +248,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 11,
"id": "4d50af16-937b-49e0-8ffd-42d30cbb41c9",
"metadata": {},
"outputs": [],
@ -260,12 +260,11 @@
"\n",
"class GPTDatasetV1(Dataset):\n",
" def __init__(self, txt, tokenizer, max_length, stride):\n",
" self.tokenizer = tokenizer\n",
" self.input_ids = []\n",
" self.target_ids = []\n",
"\n",
" # Tokenize the entire text\n",
" token_ids = self.tokenizer.encode(txt)\n",
" token_ids = tokenizer.encode(txt)\n",
"\n",
" # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
" for i in range(0, len(token_ids) - max_length, stride):\n",
@ -311,7 +310,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 12,
"id": "0128eefa-d7c8-4f76-9851-566dfa7c3745",
"metadata": {},
"outputs": [
@ -324,7 +323,7 @@
" [ 402, 271]])"
]
},
"execution_count": 11,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@ -341,7 +340,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 13,
"id": "ff5c1e90-c6de-4a87-adf6-7e19f603291c",
"metadata": {},
"outputs": [
@ -354,7 +353,7 @@
" [ 402, 271, 10899, 2138, 257, 7026, 15632, 438]])"
]
},
"execution_count": 12,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}

View File

@ -82,12 +82,11 @@
"\n",
"class GPTDatasetV1(Dataset):\n",
" def __init__(self, txt, tokenizer, max_length, stride):\n",
" self.tokenizer = tokenizer\n",
" self.input_ids = []\n",
" self.target_ids = []\n",
"\n",
" # Tokenize the entire text\n",
" token_ids = self.tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
" token_ids = tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
"\n",
" # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
" for i in range(0, len(token_ids) - max_length, stride):\n",

View File

@ -15,7 +15,7 @@ class GPTDatasetV1(Dataset):
self.target_ids = []
# Tokenize the entire text
token_ids = self.tokenizer.encode(txt)
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):

View File

@ -23,7 +23,7 @@ class GPTDatasetV1(Dataset):
self.target_ids = []
# Tokenize the entire text
token_ids = tokenizer.encode(txt)
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):

View File

@ -23,7 +23,7 @@ class GPTDatasetV1(Dataset):
self.target_ids = []
# Tokenize the entire text
token_ids = tokenizer.encode(txt)
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):

View File

@ -23,7 +23,7 @@ class GPTDatasetV1(Dataset):
self.target_ids = []
# Tokenize the entire text
token_ids = tokenizer.encode(txt)
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):

View File

@ -23,7 +23,7 @@ class GPTDatasetV1(Dataset):
self.target_ids = []
# Tokenize the entire text
token_ids = tokenizer.encode(txt)
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):

View File

@ -20,12 +20,11 @@ from torch.utils.data import Dataset, DataLoader
class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
self.input_ids = []
self.target_ids = []
# Tokenize the entire text
token_ids = tokenizer.encode(txt)
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):

View File

@ -20,12 +20,11 @@ from torch.utils.data import Dataset, DataLoader
class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
self.input_ids = []
self.target_ids = []
# Tokenize the entire text
token_ids = tokenizer.encode(txt)
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):

View File

@ -25,7 +25,7 @@ class GPTDatasetV1(Dataset):
self.target_ids = []
# Tokenize the entire text
token_ids = tokenizer.encode(txt)
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):