Llama3Fast (#593)

* Llama3Fast

* Update pkg/llms_from_scratch/tests/test_llama3.py
This commit is contained in:
Sebastian Raschka 2025-04-01 12:56:11 -05:00 committed by GitHub
parent aedad7efc3
commit 43e25a5165
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 197 additions and 12 deletions

View File

@ -67,7 +67,10 @@ class Llama3Model(nn.Module):
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
# Reusuable utilities
self.register_buffer("mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool())
self.register_buffer(
"mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool(),
persistent=False
)
if cfg["orig_context_length"] != cfg["context_length"]:
cfg["rope_base"] = rescale_theta(
@ -86,7 +89,6 @@ class Llama3Model(nn.Module):
self.cfg = cfg
def forward(self, in_idx):
# Forward pass
tok_embeds = self.tok_emb(in_idx)
x = tok_embeds
@ -143,9 +145,7 @@ class FeedForward(nn.Module):
class GroupedQueryAttention(nn.Module):
def __init__(
self, d_in, d_out, num_heads,
num_kv_groups,
dtype=None
self, d_in, d_out, num_heads, num_kv_groups, dtype=None
):
super().__init__()
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
@ -375,3 +375,136 @@ def clean_text(text, header_end="assistant<|end_header_id|>\n\n"):
else:
# If the token is not found, return the original text
return text
######################################################################
# Llama 3 fast (alternative code geared towards efficiency)
######################################################################
class GroupedQueryAttentionFast(nn.Module):
"""
Drop-in replacement for GroupedQueryAttention but using PyTorch's
scaled_dot_product_attention, which uses FlashAttention if run
on an Ampere GPU (like A100) or newer and uses float16/bfloat16 or lower.
"""
def __init__(self, d_in, d_out, num_heads, num_kv_groups, dtype=None):
super().__init__()
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads
self.num_kv_groups = num_kv_groups
self.group_size = num_heads // num_kv_groups
self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)
self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)
def forward(self, x, cos, sin):
b, num_tokens, _ = x.shape
# Project to queries, keys, values
q = self.W_query(x).view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
k = self.W_key(x).view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
v = self.W_value(x).view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
# Apply Rotary Positional Embedding
q = apply_rope(q, cos, sin)
k = apply_rope(k, cos, sin)
# Expand key/value groups to full head count
k = k.repeat_interleave(self.group_size, dim=1)
v = v.repeat_interleave(self.group_size, dim=1)
# Efficient scaled dot-product attention
attn_output = torch.nn.functional.scaled_dot_product_attention(
q, k, v,
is_causal=True # Enables Flash/FlexAttention kernels
)
# Combine heads and project
attn_output = attn_output.transpose(1, 2).reshape(b, num_tokens, self.d_out)
return self.out_proj(attn_output)
class TransformerBlockFast(nn.Module):
"""
Same as original TransformerBlock but uses
GroupedQueryAttentionFast instead of GroupedQueryAttention.
"""
def __init__(self, cfg):
super().__init__()
self.att = GroupedQueryAttentionFast(
d_in=cfg["emb_dim"],
d_out=cfg["emb_dim"],
num_heads=cfg["n_heads"],
num_kv_groups=cfg["n_kv_groups"],
dtype=cfg["dtype"]
)
self.ff = FeedForward(cfg)
self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
def forward(self, x, cos, sin):
# Shortcut connection for attention block
shortcut = x
x = self.norm1(x)
x = self.att(x, cos, sin) # Shape [batch_size, num_tokens, emb_size]
x = x + shortcut # Add the original input back
# Shortcut connection for feed-forward block
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = x + shortcut # Add the original input back
return x
class Llama3ModelFast(nn.Module):
"""
Same as original Llama3Model but uses TransformerBlockFast
instead of TransformerBlock, which in turn uses
GroupedQueryAttentionFast instead of GroupedQueryAttention.
"""
def __init__(self, cfg):
super().__init__()
# Main model parameters
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, cos, sin`
[TransformerBlockFast(cfg) for _ in range(cfg["n_layers"])]
)
self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
if cfg["orig_context_length"] != cfg["context_length"]:
cfg["rope_base"] = rescale_theta(
cfg["rope_base"],
cfg["orig_context_length"],
cfg["context_length"]
)
cos, sin = compute_rope_params(
head_dim=cfg["emb_dim"] // cfg["n_heads"],
theta_base=cfg["rope_base"],
context_length=cfg["context_length"],
freq_config=cfg["rope_freq"]
)
self.register_buffer("cos", cos, persistent=False)
self.register_buffer("sin", sin, persistent=False)
self.cfg = cfg
def forward(self, in_idx):
tok_embeds = self.tok_emb(in_idx)
x = tok_embeds
for block in self.trf_blocks:
x = block(x, self.cos, self.sin)
x = self.final_norm(x)
logits = self.out_head(x.to(self.cfg["dtype"]))
return logits

View File

@ -9,7 +9,9 @@ from llms_from_scratch.llama3 import (
apply_rope,
rescale_theta,
LLAMA32_CONFIG_1B,
Llama3Model
GroupedQueryAttention,
GroupedQueryAttentionFast,
Llama3Model,
)
import importlib
@ -117,13 +119,63 @@ def test_rescale():
assert old_theta == 500_000.
def test_grouped_query_attention_equivalence():
torch.manual_seed(42)
b, t, d_in, d_out, num_heads, num_kv_groups = 2, 8, 32, 64, 4, 2
x = torch.randn(b, t, d_in)
cos, sin = compute_rope_params(
head_dim=d_out // num_heads,
theta_base=50_000,
context_length=t,
freq_config={
"factor": 32.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": t,
}
)
# Causal mask for the slow version
mask = torch.triu(torch.ones(t, t, dtype=torch.bool), diagonal=1)
attn1 = GroupedQueryAttention(d_in, d_out, num_heads, num_kv_groups)
attn2 = GroupedQueryAttentionFast(d_in, d_out, num_heads, num_kv_groups)
# Copy weights to make both models identical
attn2.load_state_dict(attn1.state_dict())
# Run both
y1 = attn1(x, mask, cos, sin)
y2 = attn2(x, cos, sin)
# Compare outputs
max_diff = (y1 - y2).abs().max().item()
print(f"Max difference between slow and fast outputs: {max_diff:.4e}")
assert torch.allclose(y1, y2, atol=1e-4)
@pytest.fixture(scope="session")
def llama3_weights_path(tmp_path_factory):
"""Creates and saves a deterministic Llama3 model for testing."""
path = tmp_path_factory.mktemp("models") / "llama3_test_weights.pt"
if not path.exists():
torch.manual_seed(123)
model = Llama3Model(LLAMA32_CONFIG_1B)
torch.save(model.state_dict(), path)
return path
@pytest.mark.parametrize("ModelClass", [Llama3Model])
def test_gpt_model_variants(ModelClass):
def test_gpt_model_variants(ModelClass, llama3_weights_path):
torch.manual_seed(123)
model = ModelClass(LLAMA32_CONFIG_1B)
model.load_state_dict(torch.load(llama3_weights_path))
model.eval()
start_context = "Hello, I am"
start_context = "Llamas eat"
tokenizer = tiktoken.get_encoding("gpt2")
encoded = tokenizer.encode(start_context)
@ -137,11 +189,11 @@ def test_gpt_model_variants(ModelClass):
out = generate_text_simple(
model=model,
idx=encoded_tensor,
max_new_tokens=10,
max_new_tokens=5,
context_size=LLAMA32_CONFIG_1B["context_length"]
)
print("Encoded output text:", out)
expect = torch.tensor([
[15496, 11, 314, 716, 78563, 89362, 19616, 115725, 114917,
97198, 60342, 19108, 100752, 98969]
[43, 2543, 292, 4483, 100383, 8113, 21197, 33804, 54419]
])
assert torch.equal(expect, out)

View File

@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "llms-from-scratch"
version = "1.0.5"
version = "1.0.6"
description = "Implement a ChatGPT-like LLM in PyTorch from scratch, step by step"
readme = "README.md"
requires-python = ">=3.10"