mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-10-27 07:49:25 +00:00
Specify UTF-8 encoding in the json load command explicitely (#557)
This commit is contained in:
parent
de60da9a6b
commit
4fb0ea9d1f
@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
|
|
||||||
# Load settings and params
|
# Load settings and params
|
||||||
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
||||||
settings = json.load(open(os.path.join(model_dir, "hparams.json")))
|
settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
|
||||||
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
||||||
|
|
||||||
return settings, params
|
return settings, params
|
||||||
|
|||||||
@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
|
|
||||||
# Load settings and params
|
# Load settings and params
|
||||||
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
||||||
settings = json.load(open(os.path.join(model_dir, "hparams.json")))
|
settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
|
||||||
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
||||||
|
|
||||||
return settings, params
|
return settings, params
|
||||||
|
|||||||
@ -23,6 +23,7 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
# Define paths
|
# Define paths
|
||||||
model_dir = os.path.join(models_dir, model_size)
|
model_dir = os.path.join(models_dir, model_size)
|
||||||
base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
|
base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
|
||||||
|
backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2"
|
||||||
filenames = [
|
filenames = [
|
||||||
"checkpoint", "encoder.json", "hparams.json",
|
"checkpoint", "encoder.json", "hparams.json",
|
||||||
"model.ckpt.data-00000-of-00001", "model.ckpt.index",
|
"model.ckpt.data-00000-of-00001", "model.ckpt.index",
|
||||||
@ -33,22 +34,21 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
os.makedirs(model_dir, exist_ok=True)
|
os.makedirs(model_dir, exist_ok=True)
|
||||||
for filename in filenames:
|
for filename in filenames:
|
||||||
file_url = os.path.join(base_url, model_size, filename)
|
file_url = os.path.join(base_url, model_size, filename)
|
||||||
|
backup_url = os.path.join(backup_base_url, model_size, filename)
|
||||||
file_path = os.path.join(model_dir, filename)
|
file_path = os.path.join(model_dir, filename)
|
||||||
download_file(file_url, file_path)
|
download_file(file_url, file_path, backup_url)
|
||||||
|
|
||||||
# Load settings and params
|
# Load settings and params
|
||||||
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
||||||
settings = json.load(open(os.path.join(model_dir, "hparams.json")))
|
settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
|
||||||
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
||||||
|
|
||||||
return settings, params
|
return settings, params
|
||||||
|
|
||||||
|
|
||||||
def download_file(url, destination):
|
def download_file(url, destination, backup_url=None):
|
||||||
# Send a GET request to download the file
|
def _attempt_download(download_url):
|
||||||
|
with urllib.request.urlopen(download_url) as response:
|
||||||
try:
|
|
||||||
with urllib.request.urlopen(url) as response:
|
|
||||||
# Get the total file size from headers, defaulting to 0 if not present
|
# Get the total file size from headers, defaulting to 0 if not present
|
||||||
file_size = int(response.headers.get("Content-Length", 0))
|
file_size = int(response.headers.get("Content-Length", 0))
|
||||||
|
|
||||||
@ -57,29 +57,44 @@ def download_file(url, destination):
|
|||||||
file_size_local = os.path.getsize(destination)
|
file_size_local = os.path.getsize(destination)
|
||||||
if file_size == file_size_local:
|
if file_size == file_size_local:
|
||||||
print(f"File already exists and is up-to-date: {destination}")
|
print(f"File already exists and is up-to-date: {destination}")
|
||||||
return
|
return True # Indicate success without re-downloading
|
||||||
|
|
||||||
# Define the block size for reading the file
|
|
||||||
block_size = 1024 # 1 Kilobyte
|
block_size = 1024 # 1 Kilobyte
|
||||||
|
|
||||||
# Initialize the progress bar with total file size
|
# Initialize the progress bar with total file size
|
||||||
progress_bar_description = os.path.basename(url) # Extract filename from URL
|
progress_bar_description = os.path.basename(download_url)
|
||||||
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
||||||
# Open the destination file in binary write mode
|
|
||||||
with open(destination, "wb") as file:
|
with open(destination, "wb") as file:
|
||||||
# Read the file in chunks and write to destination
|
|
||||||
while True:
|
while True:
|
||||||
chunk = response.read(block_size)
|
chunk = response.read(block_size)
|
||||||
if not chunk:
|
if not chunk:
|
||||||
break
|
break
|
||||||
file.write(chunk)
|
file.write(chunk)
|
||||||
progress_bar.update(len(chunk)) # Update progress bar
|
progress_bar.update(len(chunk))
|
||||||
except urllib.error.HTTPError:
|
return True
|
||||||
s = (
|
|
||||||
f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
|
try:
|
||||||
"\nor the requested file is temporarily unavailable.\nPlease visit the following website"
|
if _attempt_download(url):
|
||||||
" for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
|
return
|
||||||
print(s)
|
except (urllib.error.HTTPError, urllib.error.URLError):
|
||||||
|
if backup_url is not None:
|
||||||
|
print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}")
|
||||||
|
try:
|
||||||
|
if _attempt_download(backup_url):
|
||||||
|
return
|
||||||
|
except urllib.error.HTTPError:
|
||||||
|
pass
|
||||||
|
|
||||||
|
# If we reach here, both attempts have failed
|
||||||
|
error_message = (
|
||||||
|
f"Failed to download from both primary URL ({url})"
|
||||||
|
f"{' and backup URL (' + backup_url + ')' if backup_url else ''}."
|
||||||
|
"\nCheck your internet connection or the file availability.\n"
|
||||||
|
"For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273"
|
||||||
|
)
|
||||||
|
print(error_message)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"An unexpected error occurred: {e}")
|
||||||
|
|
||||||
|
|
||||||
# Alternative way using `requests`
|
# Alternative way using `requests`
|
||||||
|
|||||||
@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
|
|
||||||
# Load settings and params
|
# Load settings and params
|
||||||
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
||||||
settings = json.load(open(os.path.join(model_dir, "hparams.json")))
|
settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
|
||||||
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
||||||
|
|
||||||
return settings, params
|
return settings, params
|
||||||
|
|||||||
@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
|
|
||||||
# Load settings and params
|
# Load settings and params
|
||||||
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
||||||
settings = json.load(open(os.path.join(model_dir, "hparams.json")))
|
settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
|
||||||
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
||||||
|
|
||||||
return settings, params
|
return settings, params
|
||||||
|
|||||||
@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
|
|
||||||
# Load settings and params
|
# Load settings and params
|
||||||
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
||||||
settings = json.load(open(os.path.join(model_dir, "hparams.json")))
|
settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
|
||||||
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
||||||
|
|
||||||
return settings, params
|
return settings, params
|
||||||
|
|||||||
@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
|
|
||||||
# Load settings and params
|
# Load settings and params
|
||||||
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
||||||
settings = json.load(open(os.path.join(model_dir, "hparams.json")))
|
settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
|
||||||
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
||||||
|
|
||||||
return settings, params
|
return settings, params
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user