Specify UTF-8 encoding in the json load command explicitely (#557)

This commit is contained in:
Sebastian Raschka 2025-03-05 11:46:21 -06:00 committed by GitHub
parent de60da9a6b
commit 4fb0ea9d1f
7 changed files with 40 additions and 25 deletions

View File

@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
# Load settings and params # Load settings and params
tf_ckpt_path = tf.train.latest_checkpoint(model_dir) tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
settings = json.load(open(os.path.join(model_dir, "hparams.json"))) settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
return settings, params return settings, params

View File

@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
# Load settings and params # Load settings and params
tf_ckpt_path = tf.train.latest_checkpoint(model_dir) tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
settings = json.load(open(os.path.join(model_dir, "hparams.json"))) settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
return settings, params return settings, params

View File

@ -23,6 +23,7 @@ def download_and_load_gpt2(model_size, models_dir):
# Define paths # Define paths
model_dir = os.path.join(models_dir, model_size) model_dir = os.path.join(models_dir, model_size)
base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2"
filenames = [ filenames = [
"checkpoint", "encoder.json", "hparams.json", "checkpoint", "encoder.json", "hparams.json",
"model.ckpt.data-00000-of-00001", "model.ckpt.index", "model.ckpt.data-00000-of-00001", "model.ckpt.index",
@ -33,22 +34,21 @@ def download_and_load_gpt2(model_size, models_dir):
os.makedirs(model_dir, exist_ok=True) os.makedirs(model_dir, exist_ok=True)
for filename in filenames: for filename in filenames:
file_url = os.path.join(base_url, model_size, filename) file_url = os.path.join(base_url, model_size, filename)
backup_url = os.path.join(backup_base_url, model_size, filename)
file_path = os.path.join(model_dir, filename) file_path = os.path.join(model_dir, filename)
download_file(file_url, file_path) download_file(file_url, file_path, backup_url)
# Load settings and params # Load settings and params
tf_ckpt_path = tf.train.latest_checkpoint(model_dir) tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
settings = json.load(open(os.path.join(model_dir, "hparams.json"))) settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
return settings, params return settings, params
def download_file(url, destination): def download_file(url, destination, backup_url=None):
# Send a GET request to download the file def _attempt_download(download_url):
with urllib.request.urlopen(download_url) as response:
try:
with urllib.request.urlopen(url) as response:
# Get the total file size from headers, defaulting to 0 if not present # Get the total file size from headers, defaulting to 0 if not present
file_size = int(response.headers.get("Content-Length", 0)) file_size = int(response.headers.get("Content-Length", 0))
@ -57,29 +57,44 @@ def download_file(url, destination):
file_size_local = os.path.getsize(destination) file_size_local = os.path.getsize(destination)
if file_size == file_size_local: if file_size == file_size_local:
print(f"File already exists and is up-to-date: {destination}") print(f"File already exists and is up-to-date: {destination}")
return return True # Indicate success without re-downloading
# Define the block size for reading the file
block_size = 1024 # 1 Kilobyte block_size = 1024 # 1 Kilobyte
# Initialize the progress bar with total file size # Initialize the progress bar with total file size
progress_bar_description = os.path.basename(url) # Extract filename from URL progress_bar_description = os.path.basename(download_url)
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
# Open the destination file in binary write mode
with open(destination, "wb") as file: with open(destination, "wb") as file:
# Read the file in chunks and write to destination
while True: while True:
chunk = response.read(block_size) chunk = response.read(block_size)
if not chunk: if not chunk:
break break
file.write(chunk) file.write(chunk)
progress_bar.update(len(chunk)) # Update progress bar progress_bar.update(len(chunk))
except urllib.error.HTTPError: return True
s = (
f"The specified URL ({url}) is incorrect, the internet connection cannot be established," try:
"\nor the requested file is temporarily unavailable.\nPlease visit the following website" if _attempt_download(url):
" for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273") return
print(s) except (urllib.error.HTTPError, urllib.error.URLError):
if backup_url is not None:
print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}")
try:
if _attempt_download(backup_url):
return
except urllib.error.HTTPError:
pass
# If we reach here, both attempts have failed
error_message = (
f"Failed to download from both primary URL ({url})"
f"{' and backup URL (' + backup_url + ')' if backup_url else ''}."
"\nCheck your internet connection or the file availability.\n"
"For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273"
)
print(error_message)
except Exception as e:
print(f"An unexpected error occurred: {e}")
# Alternative way using `requests` # Alternative way using `requests`

View File

@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
# Load settings and params # Load settings and params
tf_ckpt_path = tf.train.latest_checkpoint(model_dir) tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
settings = json.load(open(os.path.join(model_dir, "hparams.json"))) settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
return settings, params return settings, params

View File

@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
# Load settings and params # Load settings and params
tf_ckpt_path = tf.train.latest_checkpoint(model_dir) tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
settings = json.load(open(os.path.join(model_dir, "hparams.json"))) settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
return settings, params return settings, params

View File

@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
# Load settings and params # Load settings and params
tf_ckpt_path = tf.train.latest_checkpoint(model_dir) tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
settings = json.load(open(os.path.join(model_dir, "hparams.json"))) settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
return settings, params return settings, params

View File

@ -40,7 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
# Load settings and params # Load settings and params
tf_ckpt_path = tf.train.latest_checkpoint(model_dir) tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
settings = json.load(open(os.path.join(model_dir, "hparams.json"))) settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
return settings, params return settings, params