mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-08 08:42:56 +00:00
Direct Preference Optimization from scratch (#294)
This commit is contained in:
parent
ff7a6db212
commit
52435804eb
@ -118,6 +118,7 @@ Several folders contain optional materials as a bonus for interested readers:
|
||||
- [Evaluating Instruction Responses Using the OpenAI API and Ollama](ch07/03_model-evaluation)
|
||||
- [Generating a Dataset for Instruction Finetuning](ch07/05_dataset-generation)
|
||||
- [Generating a Preference Dataset with Llama 3.1 70B and Ollama](ch07/04_preference-tuning-with-dpo/create-preference-data-ollama.ipynb)
|
||||
- [Direct Preference Optimization (DPO) for LLM Alignment](ch07/04_preference-tuning-with-dpo/dpo-from-scratch.ipynb)
|
||||
|
||||
<br>
|
||||
 
|
||||
|
@ -2,11 +2,6 @@
|
||||
|
||||
- [create-preference-data-ollama.ipynb](create-preference-data-ollama.ipynb): A notebook that creates a synthetic dataset for preference finetuning dataset using Llama 3.1 and Ollama
|
||||
|
||||
- In progress ...
|
||||
- [dpo-from-scratch.ipynb](dpo-from-scratch.ipynb): This notebook implements Direct Preference Optimization (DPO) for LLM alignment
|
||||
|
||||
|
||||
|
||||
In the meantime, also see
|
||||
|
||||
- LLM Training: RLHF and Its Alternatives, [https://magazine.sebastianraschka.com/p/llm-training-rlhf-and-its-alternatives](https://magazine.sebastianraschka.com/p/llm-training-rlhf-and-its-alternatives)
|
||||
- Tips for LLM Pretraining and Evaluating Reward Models, [https://sebastianraschka.com/blog/2024/research-papers-in-march-2024.html](https://sebastianraschka.com/blog/2024/research-papers-in-march-2024.html)
|
||||
|
3097
ch07/04_preference-tuning-with-dpo/dpo-from-scratch.ipynb
Normal file
3097
ch07/04_preference-tuning-with-dpo/dpo-from-scratch.ipynb
Normal file
File diff suppressed because one or more lines are too long
470
ch07/04_preference-tuning-with-dpo/previous_chapters.py
Normal file
470
ch07/04_preference-tuning-with-dpo/previous_chapters.py
Normal file
@ -0,0 +1,470 @@
|
||||
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||||
# Source for "Build a Large Language Model From Scratch"
|
||||
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||||
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||||
#
|
||||
# This file collects all the relevant code that we covered thus far
|
||||
# throughout Chapters 2-6.
|
||||
# This file can be run as a standalone script.
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.ticker import MaxNLocator
|
||||
import numpy as np
|
||||
import tiktoken
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
|
||||
#####################################
|
||||
# Chapter 2
|
||||
#####################################
|
||||
|
||||
|
||||
class GPTDatasetV1(Dataset):
|
||||
def __init__(self, txt, tokenizer, max_length, stride):
|
||||
self.tokenizer = tokenizer
|
||||
self.input_ids = []
|
||||
self.target_ids = []
|
||||
|
||||
# Tokenize the entire text
|
||||
token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
|
||||
|
||||
# Use a sliding window to chunk the book into overlapping sequences of max_length
|
||||
for i in range(0, len(token_ids) - max_length, stride):
|
||||
input_chunk = token_ids[i:i + max_length]
|
||||
target_chunk = token_ids[i + 1: i + max_length + 1]
|
||||
self.input_ids.append(torch.tensor(input_chunk))
|
||||
self.target_ids.append(torch.tensor(target_chunk))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.input_ids)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.input_ids[idx], self.target_ids[idx]
|
||||
|
||||
|
||||
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
||||
stride=128, shuffle=True, drop_last=True, num_workers=0):
|
||||
# Initialize the tokenizer
|
||||
tokenizer = tiktoken.get_encoding("gpt2")
|
||||
|
||||
# Create dataset
|
||||
dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
|
||||
|
||||
# Create dataloader
|
||||
dataloader = DataLoader(
|
||||
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers)
|
||||
|
||||
return dataloader
|
||||
|
||||
|
||||
#####################################
|
||||
# Chapter 3
|
||||
#####################################
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
|
||||
super().__init__()
|
||||
assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
|
||||
|
||||
self.d_out = d_out
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
||||
|
||||
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
|
||||
|
||||
def forward(self, x):
|
||||
b, num_tokens, d_in = x.shape
|
||||
|
||||
keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
|
||||
queries = self.W_query(x)
|
||||
values = self.W_value(x)
|
||||
|
||||
# We implicitly split the matrix by adding a `num_heads` dimension
|
||||
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
|
||||
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
|
||||
keys = keys.transpose(1, 2)
|
||||
queries = queries.transpose(1, 2)
|
||||
values = values.transpose(1, 2)
|
||||
|
||||
# Compute scaled dot-product attention (aka self-attention) with a causal mask
|
||||
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
||||
|
||||
# Original mask truncated to the number of tokens and converted to boolean
|
||||
mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
|
||||
|
||||
# Use the mask to fill attention scores
|
||||
attn_scores.masked_fill_(mask_bool, -torch.inf)
|
||||
|
||||
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
||||
attn_weights = self.dropout(attn_weights)
|
||||
|
||||
# Shape: (b, num_tokens, num_heads, head_dim)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
|
||||
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||||
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
|
||||
context_vec = self.out_proj(context_vec) # optional projection
|
||||
|
||||
return context_vec
|
||||
|
||||
|
||||
#####################################
|
||||
# Chapter 4
|
||||
#####################################
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, emb_dim):
|
||||
super().__init__()
|
||||
self.eps = 1e-5
|
||||
self.scale = nn.Parameter(torch.ones(emb_dim))
|
||||
self.shift = nn.Parameter(torch.zeros(emb_dim))
|
||||
|
||||
def forward(self, x):
|
||||
mean = x.mean(dim=-1, keepdim=True)
|
||||
var = x.var(dim=-1, keepdim=True, unbiased=False)
|
||||
norm_x = (x - mean) / torch.sqrt(var + self.eps)
|
||||
return self.scale * norm_x + self.shift
|
||||
|
||||
|
||||
class GELU(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return 0.5 * x * (1 + torch.tanh(
|
||||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||||
(x + 0.044715 * torch.pow(x, 3))
|
||||
))
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, cfg):
|
||||
super().__init__()
|
||||
self.layers = nn.Sequential(
|
||||
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
|
||||
GELU(),
|
||||
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, cfg):
|
||||
super().__init__()
|
||||
self.att = MultiHeadAttention(
|
||||
d_in=cfg["emb_dim"],
|
||||
d_out=cfg["emb_dim"],
|
||||
context_length=cfg["context_length"],
|
||||
num_heads=cfg["n_heads"],
|
||||
dropout=cfg["drop_rate"],
|
||||
qkv_bias=cfg["qkv_bias"])
|
||||
self.ff = FeedForward(cfg)
|
||||
self.norm1 = LayerNorm(cfg["emb_dim"])
|
||||
self.norm2 = LayerNorm(cfg["emb_dim"])
|
||||
self.drop_resid = nn.Dropout(cfg["drop_rate"])
|
||||
|
||||
def forward(self, x):
|
||||
# Shortcut connection for attention block
|
||||
shortcut = x
|
||||
x = self.norm1(x)
|
||||
x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
|
||||
x = self.drop_resid(x)
|
||||
x = x + shortcut # Add the original input back
|
||||
|
||||
# Shortcut connection for feed-forward block
|
||||
shortcut = x
|
||||
x = self.norm2(x)
|
||||
x = self.ff(x)
|
||||
x = self.drop_resid(x)
|
||||
x = x + shortcut # Add the original input back
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class GPTModel(nn.Module):
|
||||
def __init__(self, cfg):
|
||||
super().__init__()
|
||||
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
|
||||
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
|
||||
self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
||||
|
||||
self.trf_blocks = nn.Sequential(
|
||||
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
||||
|
||||
self.final_norm = LayerNorm(cfg["emb_dim"])
|
||||
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
|
||||
|
||||
def forward(self, in_idx):
|
||||
batch_size, seq_len = in_idx.shape
|
||||
tok_embeds = self.tok_emb(in_idx)
|
||||
pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
|
||||
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
|
||||
x = self.drop_emb(x)
|
||||
x = self.trf_blocks(x)
|
||||
x = self.final_norm(x)
|
||||
logits = self.out_head(x)
|
||||
return logits
|
||||
|
||||
|
||||
def generate_text_simple(model, idx, max_new_tokens, context_size):
|
||||
# idx is (B, T) array of indices in the current context
|
||||
for _ in range(max_new_tokens):
|
||||
|
||||
# Crop current context if it exceeds the supported context size
|
||||
# E.g., if LLM supports only 5 tokens, and the context size is 10
|
||||
# then only the last 5 tokens are used as context
|
||||
idx_cond = idx[:, -context_size:]
|
||||
|
||||
# Get the predictions
|
||||
with torch.no_grad():
|
||||
logits = model(idx_cond)
|
||||
|
||||
# Focus only on the last time step
|
||||
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
# Get the idx of the vocab entry with the highest logits value
|
||||
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
|
||||
|
||||
# Append sampled index to the running sequence
|
||||
idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
|
||||
|
||||
return idx
|
||||
|
||||
|
||||
#####################################
|
||||
# Chapter 5
|
||||
#####################################
|
||||
def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
|
||||
|
||||
# For-loop is the same as before: Get logits, and only focus on last time step
|
||||
for _ in range(max_new_tokens):
|
||||
idx_cond = idx[:, -context_size:]
|
||||
with torch.no_grad():
|
||||
logits = model(idx_cond)
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
# New: Filter logits with top_k sampling
|
||||
if top_k is not None:
|
||||
# Keep only top_k values
|
||||
top_logits, _ = torch.topk(logits, top_k)
|
||||
min_val = top_logits[:, -1]
|
||||
logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
|
||||
|
||||
# New: Apply temperature scaling
|
||||
if temperature > 0.0:
|
||||
logits = logits / temperature
|
||||
|
||||
# Apply softmax to get probabilities
|
||||
probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)
|
||||
|
||||
# Sample from the distribution
|
||||
idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
|
||||
|
||||
# Otherwise same as before: get idx of the vocab entry with the highest logits value
|
||||
else:
|
||||
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
|
||||
|
||||
if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified
|
||||
break
|
||||
|
||||
# Same as before: append sampled index to the running sequence
|
||||
idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
|
||||
|
||||
return idx
|
||||
|
||||
|
||||
def train_model_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
|
||||
eval_freq, eval_iter, start_context, tokenizer):
|
||||
# Initialize lists to track losses and tokens seen
|
||||
train_losses, val_losses, track_tokens_seen = [], [], []
|
||||
tokens_seen, global_step = 0, -1
|
||||
|
||||
# Main training loop
|
||||
for epoch in range(num_epochs):
|
||||
model.train() # Set model to training mode
|
||||
|
||||
for input_batch, target_batch in train_loader:
|
||||
optimizer.zero_grad() # Reset loss gradients from previous batch iteration
|
||||
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
||||
loss.backward() # Calculate loss gradients
|
||||
optimizer.step() # Update model weights using loss gradients
|
||||
tokens_seen += input_batch.numel()
|
||||
global_step += 1
|
||||
|
||||
# Optional evaluation step
|
||||
if global_step % eval_freq == 0:
|
||||
train_loss, val_loss = evaluate_model(
|
||||
model, train_loader, val_loader, device, eval_iter)
|
||||
train_losses.append(train_loss)
|
||||
val_losses.append(val_loss)
|
||||
track_tokens_seen.append(tokens_seen)
|
||||
print(f"Ep {epoch+1} (Step {global_step:06d}): "
|
||||
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
|
||||
|
||||
# Print a sample text after each epoch
|
||||
generate_and_print_sample(
|
||||
model, tokenizer, device, start_context
|
||||
)
|
||||
|
||||
return train_losses, val_losses, track_tokens_seen
|
||||
|
||||
|
||||
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
|
||||
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
|
||||
model.train()
|
||||
return train_loss, val_loss
|
||||
|
||||
|
||||
def generate_and_print_sample(model, tokenizer, device, start_context):
|
||||
model.eval()
|
||||
context_size = model.pos_emb.weight.shape[0]
|
||||
encoded = text_to_token_ids(start_context, tokenizer).to(device)
|
||||
with torch.no_grad():
|
||||
token_ids = generate_text_simple(
|
||||
model=model, idx=encoded,
|
||||
max_new_tokens=50, context_size=context_size
|
||||
)
|
||||
decoded_text = token_ids_to_text(token_ids, tokenizer)
|
||||
print(decoded_text.replace("\n", " ")) # Compact print format
|
||||
model.train()
|
||||
|
||||
|
||||
def assign(left, right):
|
||||
if left.shape != right.shape:
|
||||
raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
|
||||
return torch.nn.Parameter(torch.tensor(right))
|
||||
|
||||
|
||||
def load_weights_into_gpt(gpt, params):
|
||||
gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe'])
|
||||
gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte'])
|
||||
|
||||
for b in range(len(params["blocks"])):
|
||||
q_w, k_w, v_w = np.split(
|
||||
(params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1)
|
||||
gpt.trf_blocks[b].att.W_query.weight = assign(
|
||||
gpt.trf_blocks[b].att.W_query.weight, q_w.T)
|
||||
gpt.trf_blocks[b].att.W_key.weight = assign(
|
||||
gpt.trf_blocks[b].att.W_key.weight, k_w.T)
|
||||
gpt.trf_blocks[b].att.W_value.weight = assign(
|
||||
gpt.trf_blocks[b].att.W_value.weight, v_w.T)
|
||||
|
||||
q_b, k_b, v_b = np.split(
|
||||
(params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1)
|
||||
gpt.trf_blocks[b].att.W_query.bias = assign(
|
||||
gpt.trf_blocks[b].att.W_query.bias, q_b)
|
||||
gpt.trf_blocks[b].att.W_key.bias = assign(
|
||||
gpt.trf_blocks[b].att.W_key.bias, k_b)
|
||||
gpt.trf_blocks[b].att.W_value.bias = assign(
|
||||
gpt.trf_blocks[b].att.W_value.bias, v_b)
|
||||
|
||||
gpt.trf_blocks[b].att.out_proj.weight = assign(
|
||||
gpt.trf_blocks[b].att.out_proj.weight,
|
||||
params["blocks"][b]["attn"]["c_proj"]["w"].T)
|
||||
gpt.trf_blocks[b].att.out_proj.bias = assign(
|
||||
gpt.trf_blocks[b].att.out_proj.bias,
|
||||
params["blocks"][b]["attn"]["c_proj"]["b"])
|
||||
|
||||
gpt.trf_blocks[b].ff.layers[0].weight = assign(
|
||||
gpt.trf_blocks[b].ff.layers[0].weight,
|
||||
params["blocks"][b]["mlp"]["c_fc"]["w"].T)
|
||||
gpt.trf_blocks[b].ff.layers[0].bias = assign(
|
||||
gpt.trf_blocks[b].ff.layers[0].bias,
|
||||
params["blocks"][b]["mlp"]["c_fc"]["b"])
|
||||
gpt.trf_blocks[b].ff.layers[2].weight = assign(
|
||||
gpt.trf_blocks[b].ff.layers[2].weight,
|
||||
params["blocks"][b]["mlp"]["c_proj"]["w"].T)
|
||||
gpt.trf_blocks[b].ff.layers[2].bias = assign(
|
||||
gpt.trf_blocks[b].ff.layers[2].bias,
|
||||
params["blocks"][b]["mlp"]["c_proj"]["b"])
|
||||
|
||||
gpt.trf_blocks[b].norm1.scale = assign(
|
||||
gpt.trf_blocks[b].norm1.scale,
|
||||
params["blocks"][b]["ln_1"]["g"])
|
||||
gpt.trf_blocks[b].norm1.shift = assign(
|
||||
gpt.trf_blocks[b].norm1.shift,
|
||||
params["blocks"][b]["ln_1"]["b"])
|
||||
gpt.trf_blocks[b].norm2.scale = assign(
|
||||
gpt.trf_blocks[b].norm2.scale,
|
||||
params["blocks"][b]["ln_2"]["g"])
|
||||
gpt.trf_blocks[b].norm2.shift = assign(
|
||||
gpt.trf_blocks[b].norm2.shift,
|
||||
params["blocks"][b]["ln_2"]["b"])
|
||||
|
||||
gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"])
|
||||
gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"])
|
||||
gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"])
|
||||
|
||||
|
||||
def text_to_token_ids(text, tokenizer):
|
||||
encoded = tokenizer.encode(text, allowed_special={"<|endoftext|>"})
|
||||
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
|
||||
return encoded_tensor
|
||||
|
||||
|
||||
def token_ids_to_text(token_ids, tokenizer):
|
||||
flat = token_ids.squeeze(0) # remove batch dimension
|
||||
return tokenizer.decode(flat.tolist())
|
||||
|
||||
|
||||
def calc_loss_batch(input_batch, target_batch, model, device):
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
logits = model(input_batch)
|
||||
loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten())
|
||||
return loss
|
||||
|
||||
|
||||
def calc_loss_loader(data_loader, model, device, num_batches=None):
|
||||
total_loss = 0.
|
||||
if len(data_loader) == 0:
|
||||
return float("nan")
|
||||
elif num_batches is None:
|
||||
num_batches = len(data_loader)
|
||||
else:
|
||||
# Reduce the number of batches to match the total number of batches in the data loader
|
||||
# if num_batches exceeds the number of batches in the data loader
|
||||
num_batches = min(num_batches, len(data_loader))
|
||||
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||||
if i < num_batches:
|
||||
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
||||
total_loss += loss.item()
|
||||
else:
|
||||
break
|
||||
return total_loss / num_batches
|
||||
|
||||
|
||||
def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses, label="loss"):
|
||||
fig, ax1 = plt.subplots(figsize=(5, 3))
|
||||
|
||||
# Plot training and validation loss against epochs
|
||||
ax1.plot(epochs_seen, train_losses, label=f"Training {label}")
|
||||
ax1.plot(epochs_seen, val_losses, linestyle="-.", label=f"Validation {label}")
|
||||
ax1.set_xlabel("Epochs")
|
||||
ax1.set_ylabel(label.capitalize())
|
||||
ax1.legend()
|
||||
ax1.xaxis.set_major_locator(MaxNLocator(integer=True)) # only show integer labels on x-axis
|
||||
|
||||
# Create a second x-axis for tokens seen
|
||||
ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis
|
||||
ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks
|
||||
ax2.set_xlabel("Tokens seen")
|
||||
|
||||
fig.tight_layout() # Adjust layout to make room
|
||||
plt.savefig(f"{label}-plot.pdf")
|
||||
plt.show()
|
@ -10,6 +10,6 @@
|
||||
|
||||
- [03_model-evaluation](03_model-evaluation) contains utility code for evaluating instruction responses using a local Llama 3 model and the GPT-4 API.
|
||||
|
||||
- [04_preference-tuning-with-dpo](04_preference-tuning-with-dpo) implements code for preference finetuning with DPO (in progress)
|
||||
- [04_preference-tuning-with-dpo](04_preference-tuning-with-dpo) implements code for preference finetuning with Direct Preference Optimization (DPO)
|
||||
|
||||
- [05_dataset-generation](05_dataset-generation) contains code to generate synthetic datasets for instruction finetuning
|
||||
|
Loading…
x
Reference in New Issue
Block a user