mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-11-02 02:41:00 +00:00
[minor] typo & comments (#441)
* typo & comment - safe -> save - commenting code: batch_size, seq_len = in_idx.shape * comment - adding # NEW for assert num_heads % num_kv_groups == 0 * update memory wording --------- Co-authored-by: rasbt <mail@sebastianraschka.com>
This commit is contained in:
parent
dcef9b7d6f
commit
57fdd94358
@ -381,7 +381,7 @@
|
||||
"id": "qcD8LSHNhBRW"
|
||||
},
|
||||
"source": [
|
||||
"- Note that we also added a `dtype=cfg[\"dtype\"]` setting above, which will allow us to load the model directly in lower precision formats later to save memory (versus instantiating it in the original 32-bit precision format and then converting it)\n",
|
||||
"- Note that we also added a `dtype=cfg[\"dtype\"]` setting above, which will allow us to load the model directly in lower precision formats later to reduce memory usage (versus instantiating it in the original 32-bit precision format and then converting it)\n",
|
||||
"- We also set `bias=False` since Llama doesn't use any bias units"
|
||||
]
|
||||
},
|
||||
@ -648,7 +648,7 @@
|
||||
"\n",
|
||||
"mha(example_batch)\n",
|
||||
"\n",
|
||||
"del mha # delete to safe memory"
|
||||
"del mha # delete to free up memory"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -781,7 +781,7 @@
|
||||
" self.out_head = nn.Linear(cfg[\"emb_dim\"], cfg[\"vocab_size\"], bias=False, dtype=cfg[\"dtype\"])\n",
|
||||
"\n",
|
||||
" def forward(self, in_idx):\n",
|
||||
" batch_size, seq_len = in_idx.shape\n",
|
||||
" # batch_size, seq_len = in_idx.shape\n",
|
||||
" tok_embeds = self.tok_emb(in_idx)\n",
|
||||
" # pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))\n",
|
||||
" x = tok_embeds # + pos_embeds # Shape [batch_size, num_tokens, emb_size]\n",
|
||||
@ -890,7 +890,7 @@
|
||||
" \"n_heads\": 32, # Number of attention heads\n",
|
||||
" \"n_layers\": 32, # Number of layers\n",
|
||||
" \"hidden_dim\": 11008, # NEW: Size of the intermediate dimension in FeedForward\n",
|
||||
" \"dtype\": torch.bfloat16 # NEW: Lower-precision dtype to save memory\n",
|
||||
" \"dtype\": torch.bfloat16 # NEW: Lower-precision dtype to reduce memory usage\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
@ -1691,7 +1691,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.6"
|
||||
"version": "3.11.4"
|
||||
},
|
||||
"widgets": {
|
||||
"application/vnd.jupyter.widget-state+json": {
|
||||
|
||||
@ -481,7 +481,7 @@
|
||||
" ):\n",
|
||||
" super().__init__()\n",
|
||||
" assert d_out % num_heads == 0, \"d_out must be divisible by num_heads\"\n",
|
||||
" assert num_heads % num_kv_groups == 0, \"num_heads must be divisible by num_kv_groups\"\n",
|
||||
" assert num_heads % num_kv_groups == 0, \"num_heads must be divisible by num_kv_groups\" # NEW\n",
|
||||
"\n",
|
||||
" self.d_out = d_out\n",
|
||||
" self.num_heads = num_heads\n",
|
||||
@ -886,7 +886,7 @@
|
||||
" \"n_heads\": 32, # Number of attention heads\n",
|
||||
" \"n_layers\": 32, # Number of layers\n",
|
||||
" \"hidden_dim\": 11_008, # Size of the intermediate dimension in FeedForward\n",
|
||||
" \"dtype\": torch.bfloat16 # Lower-precision dtype to save memory\n",
|
||||
" \"dtype\": torch.bfloat16 # Lower-precision dtype to reduce memory usage\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
@ -909,7 +909,7 @@
|
||||
" \"n_kv_groups\": 8, # NEW: Key-Value groups for grouped-query attention\n",
|
||||
" \"rope_base\": 500_000.0, # NEW: The base in RoPE's \"theta\" was increased to 500_000\n",
|
||||
" \"rope_freq\": None, # NEW: Additional configuration for adjusting the RoPE frequencies\n",
|
||||
" \"dtype\": torch.bfloat16 # Lower-precision dtype to save memory\n",
|
||||
" \"dtype\": torch.bfloat16 # Lower-precision dtype to reduce memory usage\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
@ -2062,7 +2062,7 @@
|
||||
" \"n_kv_groups\": 8, # Key-Value groups for grouped-query attention\n",
|
||||
" \"rope_base\": 500_000.0, # The base in RoPE's \"theta\"\n",
|
||||
" \"rope_freq\": None, # Additional configuration for adjusting the RoPE frequencies\n",
|
||||
" \"dtype\": torch.bfloat16 # Lower-precision dtype to save memory\n",
|
||||
" \"dtype\": torch.bfloat16 # Lower-precision dtype to reduce memory usage\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"LLAMA31_CONFIG_8B = {\n",
|
||||
@ -2074,7 +2074,7 @@
|
||||
" \"hidden_dim\": 14_336, # Size of the intermediate dimension in FeedForward\n",
|
||||
" \"n_kv_groups\": 8, # Key-Value groups for grouped-query attention\n",
|
||||
" \"rope_base\": 500_000.0, # The base in RoPE's \"theta\"\n",
|
||||
" \"dtype\": torch.bfloat16, # Lower-precision dtype to save memory\n",
|
||||
" \"dtype\": torch.bfloat16, # Lower-precision dtype to reduce memory usage\n",
|
||||
" \"rope_freq\": { # NEW: RoPE frequency scaling\n",
|
||||
" \"factor\": 8.0,\n",
|
||||
" \"low_freq_factor\": 1.0,\n",
|
||||
@ -2448,7 +2448,7 @@
|
||||
" \"hidden_dim\": 14_336, # Size of the intermediate dimension in FeedForward\n",
|
||||
" \"n_kv_groups\": 8, # Key-Value groups for grouped-query attention\n",
|
||||
" \"rope_base\": 500_000.0, # The base in RoPE's \"theta\"\n",
|
||||
" \"dtype\": torch.bfloat16, # Lower-precision dtype to save memory\n",
|
||||
" \"dtype\": torch.bfloat16, # Lower-precision dtype to reduce memory usagey\n",
|
||||
" \"rope_freq\": { # NEW: RoPE frequency scaling\n",
|
||||
" \"factor\": 8.0,\n",
|
||||
" \"low_freq_factor\": 1.0,\n",
|
||||
@ -2467,7 +2467,7 @@
|
||||
" \"hidden_dim\": 8192, # NEW: Almost half the size of the intermediate dimension in FeedForward\n",
|
||||
" \"n_kv_groups\": 8, # Key-Value groups for grouped-query attention\n",
|
||||
" \"rope_base\": 500_000.0, # The base in RoPE's \"theta\"\n",
|
||||
" \"dtype\": torch.bfloat16, # Lower-precision dtype to save memory\n",
|
||||
" \"dtype\": torch.bfloat16, # Lower-precision dtype to reduce memory usage\n",
|
||||
" \"rope_freq\": { # RoPE frequency scaling\n",
|
||||
" \"factor\": 32.0, # NEW: Adjustment of the rescaling factor\n",
|
||||
" \"low_freq_factor\": 1.0,\n",
|
||||
|
||||
@ -438,7 +438,7 @@
|
||||
" \"hidden_dim\": 8192, # Size of the intermediate dimension in FeedForward\n",
|
||||
" \"n_kv_groups\": 8, # Key-Value groups for grouped-query attention\n",
|
||||
" \"rope_base\": 500_000.0, # The base in RoPE's \"theta\"\n",
|
||||
" \"dtype\": torch.bfloat16, # Lower-precision dtype to save memory\n",
|
||||
" \"dtype\": torch.bfloat16, # Lower-precision dtype to reduce memory usage\n",
|
||||
" \"rope_freq\": { # RoPE frequency scaling\n",
|
||||
" \"factor\": 32.0,\n",
|
||||
" \"low_freq_factor\": 1.0,\n",
|
||||
@ -458,7 +458,7 @@
|
||||
"# \"hidden_dim\": 8192, # Size of the intermediate dimension in FeedForward\n",
|
||||
"# \"n_kv_groups\": 8, # Key-Value groups for grouped-query attention\n",
|
||||
"# \"rope_base\": 500_000.0, # The base in RoPE's \"theta\"\n",
|
||||
"# \"dtype\": torch.bfloat16, # Lower-precision dtype to save memory\n",
|
||||
"# \"dtype\": torch.bfloat16, # Lower-precision dtype to reduce memory usage\n",
|
||||
"# \"rope_freq\": { # RoPE frequency scaling\n",
|
||||
"# \"factor\": 32.0,\n",
|
||||
"# \"low_freq_factor\": 1.0,\n",
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user