mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 01:41:26 +00:00 
			
		
		
		
	Added PDF display support to Docker image and VS Code and updated first step for gutenberg project (#111)
* added VS Code extensions recommendations * Added PDF display support to Docker image and VS Code * fixed steps to download the dataset
This commit is contained in:
		
							parent
							
								
									58d5bd9e39
								
							
						
					
					
						commit
						61b6e35ddf
					
				| @ -11,7 +11,8 @@ | |||||||
|         "ms-python.python", |         "ms-python.python", | ||||||
|         "ms-azuretools.vscode-docker", |         "ms-azuretools.vscode-docker", | ||||||
|         "ms-toolsai.jupyter", |         "ms-toolsai.jupyter", | ||||||
|         "yahyabatulu.vscode-markdown-alert" |         "yahyabatulu.vscode-markdown-alert", | ||||||
|  |         "tomoki1207.pdf" | ||||||
|       ] |       ] | ||||||
|     } |     } | ||||||
|   } |   } | ||||||
|  | |||||||
							
								
								
									
										1
									
								
								.vscode/extensions.json
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.vscode/extensions.json
									
									
									
									
										vendored
									
									
								
							| @ -5,5 +5,6 @@ | |||||||
|         "ms-azuretools.vscode-docker", |         "ms-azuretools.vscode-docker", | ||||||
|         "ms-vscode-remote.vscode-remote-extensionpack", |         "ms-vscode-remote.vscode-remote-extensionpack", | ||||||
|         "yahyabatulu.vscode-markdown-alert", |         "yahyabatulu.vscode-markdown-alert", | ||||||
|  |         "tomoki1207.pdf", | ||||||
|     ] |     ] | ||||||
| } | } | ||||||
| @ -23,7 +23,7 @@ As of this writing, this will require approximately 50 GB of disk space, but it | |||||||
| 
 | 
 | ||||||
| Linux and macOS users can follow these steps to download the dataset (if you are a Windows user, please see the note below): | Linux and macOS users can follow these steps to download the dataset (if you are a Windows user, please see the note below): | ||||||
| 
 | 
 | ||||||
| Set the `03_bonus_pretraining_on_gutenberg` folder as working directory to clone the `gutenberg` repository locally in this folder (this is necessary to run the provided scripts `prepare_dataset.py` and `pretraining_simple.py`). For instance, when being in the `LLMs-from-scratch` repository's folder, navigate into the *03_bonus_pretraining_on_gutenberg* folder via: | 1. Set the `03_bonus_pretraining_on_gutenberg` folder as working directory to clone the `gutenberg` repository locally in this folder (this is necessary to run the provided scripts `prepare_dataset.py` and `pretraining_simple.py`). For instance, when being in the `LLMs-from-scratch` repository's folder, navigate into the *03_bonus_pretraining_on_gutenberg* folder via: | ||||||
| ```bash | ```bash | ||||||
| cd ch05/03_bonus_pretraining_on_gutenberg | cd ch05/03_bonus_pretraining_on_gutenberg | ||||||
| ``` | ``` | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Daniel Kleine
						Daniel Kleine