mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-09-12 01:37:32 +00:00
Added PDF display support to Docker image and VS Code and updated first step for gutenberg project (#111)
* added VS Code extensions recommendations * Added PDF display support to Docker image and VS Code * fixed steps to download the dataset
This commit is contained in:
parent
58d5bd9e39
commit
61b6e35ddf
@ -11,7 +11,8 @@
|
|||||||
"ms-python.python",
|
"ms-python.python",
|
||||||
"ms-azuretools.vscode-docker",
|
"ms-azuretools.vscode-docker",
|
||||||
"ms-toolsai.jupyter",
|
"ms-toolsai.jupyter",
|
||||||
"yahyabatulu.vscode-markdown-alert"
|
"yahyabatulu.vscode-markdown-alert",
|
||||||
|
"tomoki1207.pdf"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
1
.vscode/extensions.json
vendored
1
.vscode/extensions.json
vendored
@ -5,5 +5,6 @@
|
|||||||
"ms-azuretools.vscode-docker",
|
"ms-azuretools.vscode-docker",
|
||||||
"ms-vscode-remote.vscode-remote-extensionpack",
|
"ms-vscode-remote.vscode-remote-extensionpack",
|
||||||
"yahyabatulu.vscode-markdown-alert",
|
"yahyabatulu.vscode-markdown-alert",
|
||||||
|
"tomoki1207.pdf",
|
||||||
]
|
]
|
||||||
}
|
}
|
@ -23,7 +23,7 @@ As of this writing, this will require approximately 50 GB of disk space, but it
|
|||||||
|
|
||||||
Linux and macOS users can follow these steps to download the dataset (if you are a Windows user, please see the note below):
|
Linux and macOS users can follow these steps to download the dataset (if you are a Windows user, please see the note below):
|
||||||
|
|
||||||
Set the `03_bonus_pretraining_on_gutenberg` folder as working directory to clone the `gutenberg` repository locally in this folder (this is necessary to run the provided scripts `prepare_dataset.py` and `pretraining_simple.py`). For instance, when being in the `LLMs-from-scratch` repository's folder, navigate into the *03_bonus_pretraining_on_gutenberg* folder via:
|
1. Set the `03_bonus_pretraining_on_gutenberg` folder as working directory to clone the `gutenberg` repository locally in this folder (this is necessary to run the provided scripts `prepare_dataset.py` and `pretraining_simple.py`). For instance, when being in the `LLMs-from-scratch` repository's folder, navigate into the *03_bonus_pretraining_on_gutenberg* folder via:
|
||||||
```bash
|
```bash
|
||||||
cd ch05/03_bonus_pretraining_on_gutenberg
|
cd ch05/03_bonus_pretraining_on_gutenberg
|
||||||
```
|
```
|
||||||
|
Loading…
x
Reference in New Issue
Block a user