mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-12-24 21:52:20 +00:00
ouput -> output
This commit is contained in:
parent
b3215e3351
commit
6f486460bc
@ -466,7 +466,7 @@ def calc_accuracy_loader(data_loader, model, device, num_batches=None):
|
||||
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||||
if i < num_batches:
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
logits = model(input_batch)[:, -1, :] # Logits of last ouput token
|
||||
logits = model(input_batch)[:, -1, :] # Logits of last output token
|
||||
predicted_labels = torch.argmax(logits, dim=-1)
|
||||
|
||||
num_examples += predicted_labels.shape[0]
|
||||
@ -478,7 +478,7 @@ def calc_accuracy_loader(data_loader, model, device, num_batches=None):
|
||||
|
||||
def calc_loss_batch(input_batch, target_batch, model, device):
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
logits = model(input_batch)[:, -1, :] # Logits of last ouput token
|
||||
logits = model(input_batch)[:, -1, :] # Logits of last output token
|
||||
loss = torch.nn.functional.cross_entropy(logits, target_batch)
|
||||
return loss
|
||||
|
||||
|
||||
@ -139,7 +139,7 @@ def instantiate_model(choose_model, load_weights):
|
||||
|
||||
def calc_loss_batch(input_batch, target_batch, model, device, trainable_token=-1):
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
logits = model(input_batch)[:, trainable_token, :] # Logits of last ouput token
|
||||
logits = model(input_batch)[:, trainable_token, :] # Logits of last output token
|
||||
loss = torch.nn.functional.cross_entropy(logits, target_batch)
|
||||
return loss
|
||||
|
||||
@ -175,7 +175,7 @@ def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable
|
||||
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||||
if i < num_batches:
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
logits = model(input_batch)[:, trainable_token, :] # Logits of last ouput token
|
||||
logits = model(input_batch)[:, trainable_token, :] # Logits of last output token
|
||||
predicted_labels = torch.argmax(logits, dim=-1)
|
||||
|
||||
num_examples += predicted_labels.shape[0]
|
||||
|
||||
@ -54,7 +54,7 @@ class IMDBDataset(Dataset):
|
||||
|
||||
def calc_loss_batch(input_batch, target_batch, model, device):
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
# logits = model(input_batch)[:, -1, :] # Logits of last ouput token
|
||||
# logits = model(input_batch)[:, -1, :] # Logits of last output token
|
||||
logits = model(input_batch).logits
|
||||
loss = torch.nn.functional.cross_entropy(logits, target_batch)
|
||||
return loss
|
||||
@ -90,7 +90,7 @@ def calc_accuracy_loader(data_loader, model, device, num_batches=None):
|
||||
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||||
if i < num_batches:
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
# logits = model(input_batch)[:, -1, :] # Logits of last ouput token
|
||||
# logits = model(input_batch)[:, -1, :] # Logits of last output token
|
||||
logits = model(input_batch).logits
|
||||
predicted_labels = torch.argmax(logits, dim=1)
|
||||
num_examples += predicted_labels.shape[0]
|
||||
|
||||
@ -83,7 +83,7 @@ def instantiate_model(choose_model, load_weights):
|
||||
|
||||
def calc_loss_batch(input_batch, target_batch, model, device, trainable_token=-1):
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
logits = model(input_batch)[:, trainable_token, :] # Logits of last ouput token
|
||||
logits = model(input_batch)[:, trainable_token, :] # Logits of last output token
|
||||
loss = torch.nn.functional.cross_entropy(logits, target_batch)
|
||||
return loss
|
||||
|
||||
@ -119,7 +119,7 @@ def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable
|
||||
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||||
if i < num_batches:
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
logits = model(input_batch)[:, trainable_token, :] # Logits of last ouput token
|
||||
logits = model(input_batch)[:, trainable_token, :] # Logits of last output token
|
||||
predicted_labels = torch.argmax(logits, dim=-1)
|
||||
|
||||
num_examples += predicted_labels.shape[0]
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user