add tests

This commit is contained in:
rasbt 2025-06-22 17:48:23 -05:00
parent ffc5e4e5d6
commit 713a6e24c9
No known key found for this signature in database
3 changed files with 131 additions and 38 deletions

View File

@ -263,33 +263,27 @@ def generate_text_simple(model, idx, max_new_tokens, context_size):
return idx
####################################################
# NEW
def generate_text_simple_cached(model, idx, max_new_tokens, use_cache=True):
def generate_text_simple_cached(model, idx, max_new_tokens, context_size=None, use_cache=True):
model.eval()
ctx_len = model.pos_emb.num_embeddings # max supported length, e.g. 1024
if use_cache:
# Init cache with full prompt
model.reset_kv_cache()
with torch.no_grad():
ctx_len = context_size or model.pos_emb.num_embeddings
with torch.no_grad():
if use_cache:
model.reset_kv_cache()
logits = model(idx[:, -ctx_len:], use_cache=True)
for _ in range(max_new_tokens):
# a) pick the token with the highest log-probability (greedy sampling)
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
# b) append it to the running sequence
idx = torch.cat([idx, next_idx], dim=1)
# c) feed model only the new token
with torch.no_grad():
for _ in range(max_new_tokens):
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
idx = torch.cat([idx, next_idx], dim=1)
logits = model(next_idx, use_cache=True)
else:
for _ in range(max_new_tokens):
with torch.no_grad():
else:
for _ in range(max_new_tokens):
logits = model(idx[:, -ctx_len:], use_cache=False)
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
idx = torch.cat([idx, next_idx], dim=1)
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
idx = torch.cat([idx, next_idx], dim=1)
return idx
####################################################

View File

@ -171,7 +171,8 @@ class TransformerBlock(nn.Module):
num_heads=cfg["n_heads"],
dropout=cfg["drop_rate"],
qkv_bias=cfg["qkv_bias"],
window_size=cfg["kv_window_size"]) # NEW
window_size=cfg["kv_window_size"] if "kv_window_size" in cfg else cfg["context_length"] # NEW
)
self.ff = FeedForward(cfg)
self.norm1 = LayerNorm(cfg["emb_dim"])
self.norm2 = LayerNorm(cfg["emb_dim"])
@ -289,30 +290,25 @@ def generate_text_simple(model, idx, max_new_tokens, context_size):
####################################################
# NEW
def generate_text_simple_cached(model, idx, max_new_tokens, use_cache=True):
def generate_text_simple_cached(model, idx, max_new_tokens, context_size=None, use_cache=True):
model.eval()
ctx_len = model.pos_emb.num_embeddings # max supported length, e.g. 1024
if use_cache:
# Init cache with full prompt
model.reset_kv_cache()
with torch.no_grad():
ctx_len = context_size or model.pos_emb.num_embeddings
with torch.no_grad():
if use_cache:
model.reset_kv_cache()
logits = model(idx[:, -ctx_len:], use_cache=True)
for _ in range(max_new_tokens):
# a) pick the token with the highest log-probability (greedy sampling)
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
# b) append it to the running sequence
idx = torch.cat([idx, next_idx], dim=1)
# c) feed model only the new token
with torch.no_grad():
for _ in range(max_new_tokens):
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
idx = torch.cat([idx, next_idx], dim=1)
logits = model(next_idx, use_cache=True)
else:
for _ in range(max_new_tokens):
with torch.no_grad():
else:
for _ in range(max_new_tokens):
logits = model(idx[:, -ctx_len:], use_cache=False)
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
idx = torch.cat([idx, next_idx], dim=1)
next_idx = logits[:, -1].argmax(dim=-1, keepdim=True)
idx = torch.cat([idx, next_idx], dim=1)
return idx
####################################################

103
ch04/03_kv-cache/tests.py Normal file
View File

@ -0,0 +1,103 @@
# Code to test the GPT model implementation against the KV cache variants
import pytest
import torch
import time
import tiktoken
from gpt_ch04 import GPTModel as GPTModelBase
from gpt_ch04 import generate_text_simple
from gpt_with_kv_cache import GPTModel as GPTModelKV1
from gpt_with_kv_cache_optimized import GPTModel as GPTModelKV2
from gpt_with_kv_cache import generate_text_simple_cached
GPT_CONFIG_124M = {
"vocab_size": 50257,
"context_length": 1024,
"emb_dim": 768,
"n_heads": 12,
"n_layers": 12,
"drop_rate": 0.1,
"qkv_bias": False,
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@pytest.mark.parametrize("ModelClass", [GPTModelBase, GPTModelKV1, GPTModelKV2])
def test_gpt_model_equivalence_not_cached(ModelClass):
torch.manual_seed(123)
model = ModelClass(GPT_CONFIG_124M).to(device)
model.eval()
tokenizer = tiktoken.get_encoding("gpt2")
prompt = "Hello, I am"
encoded = tokenizer.encode(prompt)
encoded_tensor = torch.tensor(encoded, device=device).unsqueeze(0)
model_name = ModelClass.__module__ + "." + ModelClass.__name__
token_ids = generate_text_simple(
model=model,
idx=encoded_tensor,
max_new_tokens=30,
context_size=GPT_CONFIG_124M["context_length"]
)
if not hasattr(test_gpt_model_equivalence_not_cached, "results"):
test_gpt_model_equivalence_not_cached.results = []
test_gpt_model_equivalence_not_cached.results.append((model_name, token_ids))
if len(test_gpt_model_equivalence_not_cached.results) == 3:
base_name, base_output = test_gpt_model_equivalence_not_cached.results[0]
for other_name, other_output in test_gpt_model_equivalence_not_cached.results[1:]:
assert torch.equal(base_output, other_output), (
f"Mismatch between {base_name} and {other_name}"
)
@pytest.mark.parametrize("ModelClass", [GPTModelBase, GPTModelKV1, GPTModelKV2])
def test_gpt_model_equivalence_cached(ModelClass):
torch.manual_seed(123)
model = ModelClass(GPT_CONFIG_124M).to(device)
model.eval()
tokenizer = tiktoken.get_encoding("gpt2")
prompt = "Hello, I am"
encoded_tensor = torch.tensor(tokenizer.encode(prompt), device=device).unsqueeze(0)
model_name = ModelClass.__module__ + "." + ModelClass.__name__
if ModelClass is GPTModelBase:
token_ids = generate_text_simple(
model=model,
idx=encoded_tensor,
max_new_tokens=30,
context_size=GPT_CONFIG_124M["context_length"]
)
else:
token_ids = generate_text_simple_cached(
model=model,
idx=encoded_tensor,
max_new_tokens=30,
context_size=GPT_CONFIG_124M["context_length"]
)
if not hasattr(test_gpt_model_equivalence_cached, "results"):
test_gpt_model_equivalence_cached.results = []
test_gpt_model_equivalence_cached.results.append((model_name, token_ids))
if len(test_gpt_model_equivalence_cached.results) == 3:
base_name, base_output = test_gpt_model_equivalence_cached.results[0]
for other_name, other_output in test_gpt_model_equivalence_cached.results[1:]:
assert torch.equal(base_output, other_output), (
f"Mismatch between {base_name} and {other_name}"
)