mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-29 19:10:19 +00:00
remove requests dependency (#125)
This commit is contained in:
parent
90fb214822
commit
79d40c25bf
@ -1,5 +1,9 @@
|
||||
|
||||
|
||||
import os
|
||||
import requests
|
||||
import urllib.request
|
||||
|
||||
# import requests
|
||||
import json
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
@ -36,6 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
|
||||
return settings, params
|
||||
|
||||
|
||||
"""
|
||||
def download_file(url, destination):
|
||||
# Send a GET request to download the file in streaming mode
|
||||
response = requests.get(url, stream=True)
|
||||
@ -62,6 +67,37 @@ def download_file(url, destination):
|
||||
for chunk in response.iter_content(block_size):
|
||||
progress_bar.update(len(chunk)) # Update progress bar
|
||||
file.write(chunk) # Write the chunk to the file
|
||||
"""
|
||||
|
||||
|
||||
def download_file(url, destination):
|
||||
# Send a GET request to download the file
|
||||
with urllib.request.urlopen(url) as response:
|
||||
# Get the total file size from headers, defaulting to 0 if not present
|
||||
file_size = int(response.headers.get("Content-Length", 0))
|
||||
|
||||
# Check if file exists and has the same size
|
||||
if os.path.exists(destination):
|
||||
file_size_local = os.path.getsize(destination)
|
||||
if file_size == file_size_local:
|
||||
print(f"File already exists and is up-to-date: {destination}")
|
||||
return
|
||||
|
||||
# Define the block size for reading the file
|
||||
block_size = 1024 # 1 Kilobyte
|
||||
|
||||
# Initialize the progress bar with total file size
|
||||
progress_bar_description = os.path.basename(url) # Extract filename from URL
|
||||
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
||||
# Open the destination file in binary write mode
|
||||
with open(destination, "wb") as file:
|
||||
# Read the file in chunks and write to destination
|
||||
while True:
|
||||
chunk = response.read(block_size)
|
||||
if not chunk:
|
||||
break
|
||||
file.write(chunk)
|
||||
progress_bar.update(len(chunk)) # Update progress bar
|
||||
|
||||
|
||||
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
||||
|
@ -6,7 +6,9 @@
|
||||
import json
|
||||
import numpy as np
|
||||
import os
|
||||
import requests
|
||||
import urllib.request
|
||||
|
||||
# import requests
|
||||
import tensorflow as tf
|
||||
import tiktoken
|
||||
import torch
|
||||
@ -57,6 +59,7 @@ def download_and_load_gpt2(model_size, models_dir):
|
||||
return settings, params
|
||||
|
||||
|
||||
"""
|
||||
def download_file(url, destination):
|
||||
# Send a GET request to download the file in streaming mode
|
||||
response = requests.get(url, stream=True)
|
||||
@ -83,6 +86,37 @@ def download_file(url, destination):
|
||||
for chunk in response.iter_content(block_size):
|
||||
progress_bar.update(len(chunk)) # Update progress bar
|
||||
file.write(chunk) # Write the chunk to the file
|
||||
"""
|
||||
|
||||
|
||||
def download_file(url, destination):
|
||||
# Send a GET request to download the file
|
||||
with urllib.request.urlopen(url) as response:
|
||||
# Get the total file size from headers, defaulting to 0 if not present
|
||||
file_size = int(response.headers.get("Content-Length", 0))
|
||||
|
||||
# Check if file exists and has the same size
|
||||
if os.path.exists(destination):
|
||||
file_size_local = os.path.getsize(destination)
|
||||
if file_size == file_size_local:
|
||||
print(f"File already exists and is up-to-date: {destination}")
|
||||
return
|
||||
|
||||
# Define the block size for reading the file
|
||||
block_size = 1024 # 1 Kilobyte
|
||||
|
||||
# Initialize the progress bar with total file size
|
||||
progress_bar_description = os.path.basename(url) # Extract filename from URL
|
||||
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
||||
# Open the destination file in binary write mode
|
||||
with open(destination, "wb") as file:
|
||||
# Read the file in chunks and write to destination
|
||||
while True:
|
||||
chunk = response.read(block_size)
|
||||
if not chunk:
|
||||
break
|
||||
file.write(chunk)
|
||||
progress_bar.update(len(chunk)) # Update progress bar
|
||||
|
||||
|
||||
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
||||
|
Loading…
x
Reference in New Issue
Block a user