remove requests dependency (#125)

This commit is contained in:
Sebastian Raschka 2024-04-21 14:15:05 -05:00 committed by GitHub
parent 90fb214822
commit 79d40c25bf
2 changed files with 72 additions and 2 deletions

View File

@ -1,5 +1,9 @@
import os
import requests
import urllib.request
# import requests
import json
import numpy as np
import tensorflow as tf
@ -36,6 +40,7 @@ def download_and_load_gpt2(model_size, models_dir):
return settings, params
"""
def download_file(url, destination):
# Send a GET request to download the file in streaming mode
response = requests.get(url, stream=True)
@ -62,6 +67,37 @@ def download_file(url, destination):
for chunk in response.iter_content(block_size):
progress_bar.update(len(chunk)) # Update progress bar
file.write(chunk) # Write the chunk to the file
"""
def download_file(url, destination):
# Send a GET request to download the file
with urllib.request.urlopen(url) as response:
# Get the total file size from headers, defaulting to 0 if not present
file_size = int(response.headers.get("Content-Length", 0))
# Check if file exists and has the same size
if os.path.exists(destination):
file_size_local = os.path.getsize(destination)
if file_size == file_size_local:
print(f"File already exists and is up-to-date: {destination}")
return
# Define the block size for reading the file
block_size = 1024 # 1 Kilobyte
# Initialize the progress bar with total file size
progress_bar_description = os.path.basename(url) # Extract filename from URL
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
# Open the destination file in binary write mode
with open(destination, "wb") as file:
# Read the file in chunks and write to destination
while True:
chunk = response.read(block_size)
if not chunk:
break
file.write(chunk)
progress_bar.update(len(chunk)) # Update progress bar
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):

View File

@ -6,7 +6,9 @@
import json
import numpy as np
import os
import requests
import urllib.request
# import requests
import tensorflow as tf
import tiktoken
import torch
@ -57,6 +59,7 @@ def download_and_load_gpt2(model_size, models_dir):
return settings, params
"""
def download_file(url, destination):
# Send a GET request to download the file in streaming mode
response = requests.get(url, stream=True)
@ -83,6 +86,37 @@ def download_file(url, destination):
for chunk in response.iter_content(block_size):
progress_bar.update(len(chunk)) # Update progress bar
file.write(chunk) # Write the chunk to the file
"""
def download_file(url, destination):
# Send a GET request to download the file
with urllib.request.urlopen(url) as response:
# Get the total file size from headers, defaulting to 0 if not present
file_size = int(response.headers.get("Content-Length", 0))
# Check if file exists and has the same size
if os.path.exists(destination):
file_size_local = os.path.getsize(destination)
if file_size == file_size_local:
print(f"File already exists and is up-to-date: {destination}")
return
# Define the block size for reading the file
block_size = 1024 # 1 Kilobyte
# Initialize the progress bar with total file size
progress_bar_description = os.path.basename(url) # Extract filename from URL
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
# Open the destination file in binary write mode
with open(destination, "wb") as file:
# Read the file in chunks and write to destination
while True:
chunk = response.read(block_size)
if not chunk:
break
file.write(chunk)
progress_bar.update(len(chunk)) # Update progress bar
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):