add HF equivalency tests for standalone nbs (#774)

* add HF equivalency tests for standalone nbs

* update

* update

* update

* update
This commit is contained in:
Sebastian Raschka 2025-08-18 18:58:46 -05:00 committed by GitHub
parent a6b883c9f9
commit 80d4732456
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 389 additions and 91 deletions

View File

@ -51,8 +51,10 @@ jobs:
pytest --ruff ch04/01_main-chapter-code/tests.py
pytest --ruff ch04/03_kv-cache/tests.py
pytest --ruff ch05/01_main-chapter-code/tests.py
pytest --ruff ch05/07_gpt_to_llama/tests/tests.py
pytest --ruff ch05/12_gemma3/tests/test_gemma3.py
pytest --ruff ch05/07_gpt_to_llama/tests/tests_rope_and_parts.py
pytest --ruff ch05/07_gpt_to_llama/tests/test_llama32_nb.py
pytest --ruff ch05/11_qwen3/tests/test_qwen3_nb.py
pytest --ruff ch05/12_gemma3/tests/test_gemma3_nb.py
pytest --ruff ch06/01_main-chapter-code/tests.py
- name: Validate Selected Jupyter Notebooks (uv)

View File

@ -50,8 +50,10 @@ jobs:
pytest --ruff setup/02_installing-python-libraries/tests.py
pytest --ruff ch04/01_main-chapter-code/tests.py
pytest --ruff ch05/01_main-chapter-code/tests.py
pytest --ruff ch05/07_gpt_to_llama/tests/tests.py
pytest --ruff ch05/12_gemma3/tests/test_gemma3.py
pytest --ruff ch05/07_gpt_to_llama/tests/tests_rope_and_parts.py
pytest --ruff ch05/07_gpt_to_llama/tests/test_llama32_nb.py
pytest --ruff ch05/11_qwen3/tests/test_qwen3_nb.py
pytest --ruff ch05/12_gemma3/tests/test_gemma3_nb.py
pytest --ruff ch06/01_main-chapter-code/tests.py
- name: Validate Selected Jupyter Notebooks (uv)

View File

@ -47,7 +47,6 @@ jobs:
pytest --ruff setup/02_installing-python-libraries/tests.py
pytest --ruff ch04/01_main-chapter-code/tests.py
pytest --ruff ch05/01_main-chapter-code/tests.py
pytest --ruff ch05/07_gpt_to_llama/tests/tests.py
pytest --ruff ch06/01_main-chapter-code/tests.py
- name: Validate Selected Jupyter Notebooks

View File

@ -41,7 +41,6 @@ jobs:
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt
pip install -r ch05/07_gpt_to_llama/tests/test-requirements-extra.txt
pip install pytest pytest-ruff nbval
- name: Test Selected Python Scripts
@ -50,7 +49,6 @@ jobs:
pytest --ruff setup/02_installing-python-libraries/tests.py
pytest --ruff ch04/01_main-chapter-code/tests.py
pytest --ruff ch05/01_main-chapter-code/tests.py
pytest --ruff ch05/07_gpt_to_llama/tests/tests.py
pytest --ruff ch06/01_main-chapter-code/tests.py
- name: Validate Selected Jupyter Notebooks

View File

@ -50,7 +50,6 @@ jobs:
pytest --ruff setup/02_installing-python-libraries/tests.py
pytest --ruff ch04/01_main-chapter-code/tests.py
pytest --ruff ch05/01_main-chapter-code/tests.py
pytest --ruff ch05/07_gpt_to_llama/tests/tests.py
pytest --ruff ch06/01_main-chapter-code/tests.py
- name: Validate Selected Jupyter Notebooks

View File

@ -33,7 +33,6 @@ jobs:
run: |
curl -LsSf https://astral.sh/uv/install.sh | sh
uv sync --dev --python=3.10 # tests for backwards compatibility
uv pip install -r ch05/07_gpt_to_llama/tests/test-requirements-extra.txt
uv add pytest-ruff nbval
uv pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
@ -43,7 +42,6 @@ jobs:
pytest --ruff setup/02_installing-python-libraries/tests.py
pytest --ruff ch04/01_main-chapter-code/tests.py
pytest --ruff ch05/01_main-chapter-code/tests.py
pytest --ruff ch05/07_gpt_to_llama/tests/tests.py
pytest --ruff ch06/01_main-chapter-code/tests.py
- name: Validate Selected Jupyter Notebooks

View File

@ -43,6 +43,7 @@ jobs:
pip install tensorflow-io-gcs-filesystem==0.31.0 # Explicit for Windows
pip install -r ch05/07_gpt_to_llama/tests/test-requirements-extra.txt
pip install pytest-ruff nbval
pip install -e .
- name: Run Python Tests
shell: bash
@ -51,7 +52,9 @@ jobs:
pytest --ruff setup/02_installing-python-libraries/tests.py
pytest --ruff ch04/01_main-chapter-code/tests.py
pytest --ruff ch05/01_main-chapter-code/tests.py
pytest --ruff ch05/07_gpt_to_llama/tests/tests.py
pytest --ruff ch05/07_gpt_to_llama/tests/tests_rope_and_parts.py
pytest --ruff ch05/07_gpt_to_llama/tests/test_llama32_nb.py
pytest --ruff ch05/11_qwen3/tests/test_qwen3_nb.py
pytest --ruff ch06/01_main-chapter-code/tests.py
- name: Run Jupyter Notebook Tests

View File

@ -51,7 +51,6 @@ jobs:
pytest --ruff setup/02_installing-python-libraries/tests.py
pytest --ruff ch04/01_main-chapter-code/tests.py
pytest --ruff ch05/01_main-chapter-code/tests.py
pytest --ruff ch05/07_gpt_to_llama/tests/tests.py
pytest --ruff ch06/01_main-chapter-code/tests.py
- name: Run Jupyter Notebook Tests

View File

@ -0,0 +1,116 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import importlib
from pathlib import Path
import pytest
import torch
from llms_from_scratch.utils import import_definitions_from_notebook
transformers_installed = importlib.util.find_spec("transformers") is not None
@pytest.fixture
def nb_imports():
nb_dir = Path(__file__).resolve().parents[1]
mod = import_definitions_from_notebook(nb_dir, "standalone-llama32.ipynb")
return mod
@pytest.fixture
def dummy_input():
torch.manual_seed(123)
return torch.randint(0, 100, (1, 8)) # batch size 1, seq length 8
@pytest.fixture
def dummy_cfg_base():
return {
"vocab_size": 100,
"emb_dim": 32, # hidden_size
"hidden_dim": 64, # intermediate_size (FFN)
"n_layers": 2,
"n_heads": 4,
"head_dim": 8,
"n_kv_groups": 1,
"dtype": torch.float32,
"rope_base": 500_000.0,
"rope_freq": {
"factor": 8.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": 8192,
},
"context_length": 64,
}
@torch.inference_mode()
def test_dummy_llama3_forward(dummy_cfg_base, dummy_input, nb_imports):
torch.manual_seed(123)
model = nb_imports.Llama3Model(dummy_cfg_base)
out = model(dummy_input)
assert out.shape == (1, dummy_input.size(1), dummy_cfg_base["vocab_size"])
@torch.inference_mode()
@pytest.mark.skipif(not transformers_installed, reason="transformers not installed")
def test_llama3_base_equivalence_with_transformers(nb_imports):
from transformers.models.llama import LlamaConfig, LlamaForCausalLM
cfg = {
"vocab_size": 257,
"context_length": 8192,
"emb_dim": 32,
"n_heads": 4,
"n_layers": 2,
"hidden_dim": 64,
"n_kv_groups": 2,
"rope_base": 500_000.0,
"rope_freq": {
"factor": 32.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": 8192,
},
"dtype": torch.float32,
}
ours = nb_imports.Llama3Model(cfg)
hf_cfg = LlamaConfig(
vocab_size=cfg["vocab_size"],
hidden_size=cfg["emb_dim"],
num_attention_heads=cfg["n_heads"],
num_key_value_heads=cfg["n_kv_groups"],
num_hidden_layers=cfg["n_layers"],
intermediate_size=cfg["hidden_dim"],
max_position_embeddings=cfg["context_length"],
rms_norm_eps=1e-5,
attention_bias=False,
rope_theta=cfg["rope_base"],
tie_word_embeddings=False,
attn_implementation="eager",
torch_dtype=torch.float32,
rope_scaling={
"type": "llama3",
"factor": cfg["rope_freq"]["factor"],
"low_freq_factor": cfg["rope_freq"]["low_freq_factor"],
"high_freq_factor": cfg["rope_freq"]["high_freq_factor"],
"original_max_position_embeddings": cfg["rope_freq"]["original_context_length"],
},
)
theirs = LlamaForCausalLM(hf_cfg)
hf_state = theirs.state_dict()
nb_imports.load_weights_into_llama(ours, {"n_layers": cfg["n_layers"], "hidden_dim": cfg["hidden_dim"]}, hf_state)
x = torch.randint(0, cfg["vocab_size"], (2, 8), dtype=torch.long)
ours_logits = ours(x)
theirs_logits = theirs(x).logits.to(ours_logits.dtype)
torch.testing.assert_close(ours_logits, theirs_logits, rtol=1e-5, atol=1e-5)

View File

@ -0,0 +1,122 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import importlib
from pathlib import Path
import pytest
import torch
from llms_from_scratch.utils import import_definitions_from_notebook
transformers_installed = importlib.util.find_spec("transformers") is not None
@pytest.fixture
def nb_imports():
nb_dir = Path(__file__).resolve().parents[1]
mod = import_definitions_from_notebook(nb_dir, "standalone-qwen3.ipynb")
return mod
@pytest.fixture
def dummy_input():
torch.manual_seed(123)
return torch.randint(0, 100, (1, 8)) # batch size 1, seq length 8
@pytest.fixture
def dummy_cfg_base():
return {
"vocab_size": 100,
"emb_dim": 32,
"hidden_dim": 64,
"n_layers": 2,
"n_heads": 4,
"head_dim": 8,
"n_kv_groups": 1,
"qk_norm": False,
"dtype": torch.float32,
"rope_base": 10000,
"context_length": 64,
"num_experts": 0,
}
@pytest.fixture
def dummy_cfg_moe(dummy_cfg_base):
cfg = dummy_cfg_base.copy()
cfg.update({
"num_experts": 4,
"num_experts_per_tok": 2,
"moe_intermediate_size": 64,
})
return cfg
@torch.inference_mode()
def test_dummy_qwen3_forward(dummy_cfg_base, dummy_input, nb_imports):
torch.manual_seed(123)
model = nb_imports.Qwen3Model(dummy_cfg_base)
out = model(dummy_input)
assert out.shape == (1, dummy_input.size(1), dummy_cfg_base["vocab_size"]), \
f"Expected shape (1, seq_len, vocab_size), got {out.shape}"
@torch.inference_mode()
@pytest.mark.skipif(not transformers_installed, reason="transformers not installed")
def test_qwen3_base_equivalence_with_transformers(nb_imports):
from transformers import Qwen3Config, Qwen3ForCausalLM
# Tiny config so the test is fast
cfg = {
"vocab_size": 257,
"context_length": 8,
"emb_dim": 32,
"n_heads": 4,
"n_layers": 2,
"hidden_dim": 64,
"head_dim": 8,
"qk_norm": True,
"n_kv_groups": 2,
"rope_base": 1_000_000.0,
"rope_local_base": 10_000.0,
"sliding_window": 4,
"layer_types": ["full_attention", "full_attention"],
"dtype": torch.float32,
"query_pre_attn_scalar": 256,
}
model = nb_imports.Qwen3Model(cfg)
hf_cfg = Qwen3Config(
vocab_size=cfg["vocab_size"],
max_position_embeddings=cfg["context_length"],
hidden_size=cfg["emb_dim"],
num_attention_heads=cfg["n_heads"],
num_hidden_layers=cfg["n_layers"],
intermediate_size=cfg["hidden_dim"],
head_dim=cfg["head_dim"],
num_key_value_heads=cfg["n_kv_groups"],
rope_theta=cfg["rope_base"],
rope_local_base_freq=cfg["rope_local_base"],
layer_types=cfg["layer_types"],
sliding_window=cfg["sliding_window"],
tie_word_embeddings=False,
attn_implementation="eager",
torch_dtype=torch.float32,
query_pre_attn_scalar=cfg["query_pre_attn_scalar"],
rope_scaling={"rope_type": "default"},
)
hf_model = Qwen3ForCausalLM(hf_cfg)
hf_state = hf_model.state_dict()
param_config = {"n_layers": cfg["n_layers"], "hidden_dim": cfg["hidden_dim"]}
nb_imports.load_weights_into_qwen(model, param_config, hf_state)
x = torch.randint(0, cfg["vocab_size"], (2, cfg["context_length"]), dtype=torch.long)
ours_logits = model(x)
theirs_logits = hf_model(x).logits
torch.testing.assert_close(ours_logits, theirs_logits, rtol=1e-5, atol=1e-5)

View File

@ -4,77 +4,21 @@
# Code: https://github.com/rasbt/LLMs-from-scratch
import importlib
import types
import re
from pathlib import Path
import nbformat
import pytest
import torch
from llms_from_scratch.utils import import_definitions_from_notebook
transformers_installed = importlib.util.find_spec("transformers") is not None
def _extract_defs_and_classes_from_code(src):
lines = src.splitlines()
kept = []
i = 0
while i < len(lines):
line = lines[i]
stripped = line.lstrip()
# Keep decorators attached to the next def/class
if stripped.startswith("@"):
# Look ahead: if the next non-empty line starts with def/class, keep decorator
j = i + 1
while j < len(lines) and not lines[j].strip():
j += 1
if j < len(lines) and lines[j].lstrip().startswith(("def ", "class ")):
kept.append(line)
i += 1
continue
if stripped.startswith("def ") or stripped.startswith("class "):
kept.append(line)
# capture until we leave the indentation block
base_indent = len(line) - len(stripped)
i += 1
while i < len(lines):
nxt = lines[i]
if nxt.strip() == "":
kept.append(nxt)
i += 1
continue
indent = len(nxt) - len(nxt.lstrip())
if indent <= base_indent and not nxt.lstrip().startswith(("#", "@")):
break
kept.append(nxt)
i += 1
continue
i += 1
code = "\n".join(kept)
code = re.sub(r"def\s+load_weights_into_gemma\s*\(\s*Gemma3Model\s*,",
"def load_weights_into_gemma(model,",
code)
return code
def import_definitions_from_notebook(nb_dir_or_path, notebook_name):
nb_path = Path(nb_dir_or_path)
if nb_path.is_dir():
nb_file = nb_path / notebook_name
else:
nb_file = nb_path
if not nb_file.exists():
raise FileNotFoundError(f"Notebook not found: {nb_file}")
nb = nbformat.read(nb_file, as_version=4)
pieces = ["import torch", "import torch.nn as nn"]
for cell in nb.cells:
if cell.cell_type == "code":
pieces.append(_extract_defs_and_classes_from_code(cell.source))
src = "\n\n".join(pieces)
mod = types.ModuleType("gemma3_defs")
exec(src, mod.__dict__)
@pytest.fixture
def nb_imports():
nb_dir = Path(__file__).resolve().parents[1]
mod = import_definitions_from_notebook(nb_dir, "standalone-gemma3.ipynb")
return mod
@ -106,25 +50,16 @@ def dummy_cfg_base():
@torch.inference_mode()
def test_dummy_gemma3_forward(dummy_cfg_base, dummy_input):
nb_dir = Path(__file__).resolve().parents[1]
mod = import_definitions_from_notebook(nb_dir, "standalone-gemma3.ipynb")
Gemma3Model = mod.Gemma3Model
def test_dummy_gemma3_forward(dummy_cfg_base, dummy_input, nb_imports):
torch.manual_seed(123)
model = Gemma3Model(dummy_cfg_base)
model = nb_imports.Gemma3Model(dummy_cfg_base)
out = model(dummy_input)
assert out.shape == (1, dummy_input.size(1), dummy_cfg_base["vocab_size"]), f"Expected shape (1, seq_len, vocab_size), got {out.shape}"
assert out.shape == (1, dummy_input.size(1), dummy_cfg_base["vocab_size"])
@torch.inference_mode()
@pytest.mark.skipif(not transformers_installed, reason="transformers not installed")
def test_gemma3_base_equivalence_with_transformers():
nb_dir = Path(__file__).resolve().parents[1]
mod = import_definitions_from_notebook(nb_dir, "standalone-gemma3.ipynb")
Gemma3Model = mod.Gemma3Model
load_weights_into_gemma = mod.load_weights_into_gemma
def test_gemma3_base_equivalence_with_transformers(nb_imports):
from transformers import Gemma3TextConfig, Gemma3ForCausalLM
# Tiny config so the test is fast
@ -145,7 +80,7 @@ def test_gemma3_base_equivalence_with_transformers():
"dtype": torch.float32,
"query_pre_attn_scalar": 256,
}
model = Gemma3Model(cfg)
model = nb_imports.Gemma3Model(cfg)
hf_cfg = Gemma3TextConfig(
vocab_size=cfg["vocab_size"],
@ -170,7 +105,7 @@ def test_gemma3_base_equivalence_with_transformers():
hf_state = hf_model.state_dict()
param_config = {"n_layers": cfg["n_layers"], "hidden_dim": cfg["hidden_dim"]}
load_weights_into_gemma(model, param_config, hf_state)
nb_imports.load_weights_into_gemma(model, param_config, hf_state)
x = torch.randint(0, cfg["vocab_size"], (2, cfg["context_length"]), dtype=torch.long)
ours_logits = model(x)

View File

@ -116,7 +116,7 @@ QWEN3_CONFIG_30B_A3B = {
"dtype": torch.bfloat16,
"num_experts": 128,
"num_experts_per_tok": 8,
"moe_intermediate_size": 768,
"moe_intermediate_size": 768,
}

View File

@ -0,0 +1,124 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
# Internal utility functions (not intended for public use)
import ast
import re
import types
from pathlib import Path
import nbformat
def _extract_imports(src: str):
out = []
try:
tree = ast.parse(src)
except SyntaxError:
return out
for node in tree.body:
if isinstance(node, ast.Import):
parts = []
for n in node.names:
parts.append(f"{n.name} as {n.asname}" if n.asname else n.name)
out.append("import " + ", ".join(parts))
elif isinstance(node, ast.ImportFrom):
module = node.module or ""
parts = []
for n in node.names:
parts.append(f"{n.name} as {n.asname}" if n.asname else n.name)
level = "." * node.level if getattr(node, "level", 0) else ""
out.append(f"from {level}{module} import " + ", ".join(parts))
return out
def _extract_defs_and_classes_from_code(src):
lines = src.splitlines()
kept = []
i = 0
while i < len(lines):
line = lines[i]
stripped = line.lstrip()
if stripped.startswith("@"):
j = i + 1
while j < len(lines) and not lines[j].strip():
j += 1
if j < len(lines) and lines[j].lstrip().startswith(("def ", "class ")):
kept.append(line)
i += 1
continue
if stripped.startswith("def ") or stripped.startswith("class "):
kept.append(line)
base_indent = len(line) - len(stripped)
i += 1
while i < len(lines):
nxt = lines[i]
if nxt.strip() == "":
kept.append(nxt)
i += 1
continue
indent = len(nxt) - len(nxt.lstrip())
if indent <= base_indent and not nxt.lstrip().startswith(("#", "@")):
break
kept.append(nxt)
i += 1
continue
i += 1
code = "\n".join(kept)
# General rule:
# replace functions defined like `def load_weights_into_xxx(ClassName, ...`
# with `def load_weights_into_xxx(model, ...`
code = re.sub(
r"(def\s+load_weights_into_\w+\s*\()\s*\w+\s*,",
r"\1model,",
code
)
return code
def import_definitions_from_notebook(nb_dir_or_path, notebook_name=None, *, extra_globals=None):
nb_path = Path(nb_dir_or_path)
if notebook_name is not None:
nb_file = nb_path / notebook_name if nb_path.is_dir() else nb_path
else:
nb_file = nb_path
if not nb_file.exists():
raise FileNotFoundError(f"Notebook not found: {nb_file}")
nb = nbformat.read(nb_file, as_version=4)
import_lines = []
seen = set()
for cell in nb.cells:
if cell.cell_type == "code":
for line in _extract_imports(cell.source):
if line not in seen:
import_lines.append(line)
seen.add(line)
for required in ("import torch", "import torch.nn as nn"):
if required not in seen:
import_lines.append(required)
seen.add(required)
pieces = []
for cell in nb.cells:
if cell.cell_type == "code":
pieces.append(_extract_defs_and_classes_from_code(cell.source))
src = "\n\n".join(import_lines + pieces)
mod_name = nb_file.stem.replace("-", "_").replace(" ", "_") or "notebook_defs"
mod = types.ModuleType(mod_name)
if extra_globals:
mod.__dict__.update(extra_globals)
exec(src, mod.__dict__)
return mod

View File

@ -30,6 +30,7 @@ dev = [
"llms-from-scratch",
"twine>=6.1.0",
"tokenizers>=0.21.1",
"safetensors>=0.6.2",
]
[tool.ruff]