mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-16 04:31:48 +00:00
chapter 06 summary file
This commit is contained in:
parent
209f63943b
commit
88176a82eb
@ -52,7 +52,7 @@ Alternatively, you can view this and other files on GitHub at [https://github.co
|
||||
| Ch 3: Coding Attention Mechanisms | - [ch03.ipynb](ch03/01_main-chapter-code/ch03.ipynb)<br/>- [multihead-attention.ipynb](ch03/01_main-chapter-code/multihead-attention.ipynb) (summary) <br/>- [exercise-solutions.ipynb](ch03/01_main-chapter-code/exercise-solutions.ipynb)| [./ch03](./ch03) |
|
||||
| Ch 4: Implementing a GPT Model from Scratch | - [ch04.ipynb](ch04/01_main-chapter-code/ch04.ipynb)<br/>- [gpt.py](ch04/01_main-chapter-code/gpt.py) (summary)<br/>- [exercise-solutions.ipynb](ch04/01_main-chapter-code/exercise-solutions.ipynb) | [./ch04](./ch04) |
|
||||
| Ch 5: Pretraining on Unlabeled Data | - [ch05.ipynb](ch05/01_main-chapter-code/ch05.ipynb)<br/>- [gpt_train.py](ch05/01_main-chapter-code/gpt_train.py) (summary) <br/>- [gpt_generate.py](ch05/01_main-chapter-code/gpt_generate.py) (summary) <br/>- [exercise-solutions.ipynb](ch05/01_main-chapter-code/exercise-solutions.ipynb) | [./ch05](./ch05) |
|
||||
| Ch 6: Finetuning for Text Classification | - [ch06.ipynb](ch06/01_main-chapter-code/ch06.ipynb) | [./ch06](./ch06) |
|
||||
| Ch 6: Finetuning for Text Classification | - [ch06.ipynb](ch06/01_main-chapter-code/ch06.ipynb) <br/>- [gpt-class-finetune.py](ch06/01_main-chapter-code/gpt-class-finetune.py) | [./ch06](./ch06) |
|
||||
| Ch 7: Finetuning with Human Feedback | Q2 2024 | ... |
|
||||
| Appendix A: Introduction to PyTorch | - [code-part1.ipynb](appendix-A/01_main-chapter-code/code-part1.ipynb)<br/>- [code-part2.ipynb](appendix-A/01_main-chapter-code/code-part2.ipynb)<br/>- [DDP-script.py](appendix-A/01_main-chapter-code/DDP-script.py)<br/>- [exercise-solutions.ipynb](appendix-A/01_main-chapter-code/exercise-solutions.ipynb) | [./appendix-A](./appendix-A) |
|
||||
| Appendix B: References and Further Reading | No code | - |
|
||||
|
381
ch06/01_main-chapter-code/gpt-class-finetune.py
Normal file
381
ch06/01_main-chapter-code/gpt-class-finetune.py
Normal file
@ -0,0 +1,381 @@
|
||||
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||||
# Source for "Build a Large Language Model From Scratch"
|
||||
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||||
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||||
|
||||
# This is a summary file containing the main takeaways from chapter 6.
|
||||
|
||||
import urllib.request
|
||||
import zipfile
|
||||
import os
|
||||
from pathlib import Path
|
||||
import time
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import tiktoken
|
||||
import torch
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
from gpt_download import download_and_load_gpt2
|
||||
from previous_chapters import GPTModel, load_weights_into_gpt
|
||||
|
||||
|
||||
def download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path):
|
||||
if data_file_path.exists():
|
||||
print(f"{data_file_path} already exists. Skipping download and extraction.")
|
||||
return
|
||||
|
||||
# Downloading the file
|
||||
with urllib.request.urlopen(url) as response:
|
||||
with open(zip_path, "wb") as out_file:
|
||||
out_file.write(response.read())
|
||||
|
||||
# Unzipping the file
|
||||
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
||||
zip_ref.extractall(extracted_path)
|
||||
|
||||
# Add .tsv file extension
|
||||
original_file_path = Path(extracted_path) / "SMSSpamCollection"
|
||||
os.rename(original_file_path, data_file_path)
|
||||
print(f"File downloaded and saved as {data_file_path}")
|
||||
|
||||
|
||||
def create_balanced_dataset(df):
|
||||
# Count the instances of "spam"
|
||||
num_spam = df[df["Label"] == "spam"].shape[0]
|
||||
|
||||
# Randomly sample "ham" instances to match the number of "spam" instances
|
||||
ham_subset = df[df["Label"] == "ham"].sample(num_spam, random_state=123)
|
||||
|
||||
# Combine ham "subset" with "spam"
|
||||
balanced_df = pd.concat([ham_subset, df[df["Label"] == "spam"]])
|
||||
|
||||
return balanced_df
|
||||
|
||||
|
||||
def random_split(df, train_frac, validation_frac):
|
||||
# Shuffle the entire DataFrame
|
||||
df = df.sample(frac=1, random_state=123).reset_index(drop=True)
|
||||
|
||||
# Calculate split indices
|
||||
train_end = int(len(df) * train_frac)
|
||||
validation_end = train_end + int(len(df) * validation_frac)
|
||||
|
||||
# Split the DataFrame
|
||||
train_df = df[:train_end]
|
||||
validation_df = df[train_end:validation_end]
|
||||
test_df = df[validation_end:]
|
||||
|
||||
return train_df, validation_df, test_df
|
||||
|
||||
|
||||
class SpamDataset(Dataset):
|
||||
def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256):
|
||||
self.data = pd.read_csv(csv_file)
|
||||
|
||||
# Pre-tokenize texts
|
||||
self.encoded_texts = [
|
||||
tokenizer.encode(text) for text in self.data["Text"]
|
||||
]
|
||||
|
||||
if max_length is None:
|
||||
self.max_length = self._longest_encoded_length()
|
||||
else:
|
||||
self.max_length = max_length
|
||||
# Truncate sequences if they are longer than max_length
|
||||
self.encoded_texts = [
|
||||
encoded_text[:self.max_length]
|
||||
for encoded_text in self.encoded_texts
|
||||
]
|
||||
|
||||
# Pad sequences to the longest sequence
|
||||
self.encoded_texts = [
|
||||
encoded_text + [pad_token_id] * (self.max_length - len(encoded_text))
|
||||
for encoded_text in self.encoded_texts
|
||||
]
|
||||
|
||||
def __getitem__(self, index):
|
||||
encoded = self.encoded_texts[index]
|
||||
label = self.data.iloc[index]["Label"]
|
||||
return (
|
||||
torch.tensor(encoded, dtype=torch.long),
|
||||
torch.tensor(label, dtype=torch.long)
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def _longest_encoded_length(self):
|
||||
max_length = 0
|
||||
for encoded_text in self.encoded_texts:
|
||||
encoded_length = len(encoded_text)
|
||||
if encoded_length > max_length:
|
||||
max_length = encoded_length
|
||||
return max_length
|
||||
|
||||
|
||||
def calc_accuracy_loader(data_loader, model, device, num_batches=None):
|
||||
model.eval()
|
||||
correct_predictions, num_examples = 0, 0
|
||||
|
||||
if num_batches is None:
|
||||
num_batches = len(data_loader)
|
||||
else:
|
||||
num_batches = min(num_batches, len(data_loader))
|
||||
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||||
if i < num_batches:
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
logits = model(input_batch)[:, -1, :] # Logits of last output token
|
||||
predicted_labels = torch.argmax(logits, dim=-1)
|
||||
|
||||
num_examples += predicted_labels.shape[0]
|
||||
correct_predictions += (predicted_labels == target_batch).sum().item()
|
||||
else:
|
||||
break
|
||||
return correct_predictions / num_examples
|
||||
|
||||
|
||||
def calc_loss_batch(input_batch, target_batch, model, device):
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
logits = model(input_batch)[:, -1, :] # Logits of last output token
|
||||
loss = torch.nn.functional.cross_entropy(logits, target_batch)
|
||||
return loss
|
||||
|
||||
|
||||
def calc_loss_loader(data_loader, model, device, num_batches=None):
|
||||
total_loss = 0.
|
||||
if len(data_loader) == 0:
|
||||
return float("nan")
|
||||
elif num_batches is None:
|
||||
num_batches = len(data_loader)
|
||||
else:
|
||||
num_batches = min(num_batches, len(data_loader))
|
||||
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||||
if i < num_batches:
|
||||
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
||||
total_loss += loss.item()
|
||||
else:
|
||||
break
|
||||
return total_loss / num_batches
|
||||
|
||||
|
||||
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
|
||||
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
|
||||
model.train()
|
||||
return train_loss, val_loss
|
||||
|
||||
|
||||
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
|
||||
eval_freq, eval_iter, tokenizer):
|
||||
# Initialize lists to track losses and tokens seen
|
||||
train_losses, val_losses, train_accs, val_accs = [], [], [], []
|
||||
examples_seen, global_step = 0, -1
|
||||
|
||||
# Main training loop
|
||||
for epoch in range(num_epochs):
|
||||
model.train() # Set model to training mode
|
||||
|
||||
for input_batch, target_batch in train_loader:
|
||||
optimizer.zero_grad() # Reset loss gradients from previous epoch
|
||||
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
||||
loss.backward() # Calculate loss gradients
|
||||
optimizer.step() # Update model weights using loss gradients
|
||||
examples_seen += input_batch.shape[0] # New: track examples instead of tokens
|
||||
global_step += 1
|
||||
|
||||
# Optional evaluation step
|
||||
if global_step % eval_freq == 0:
|
||||
train_loss, val_loss = evaluate_model(
|
||||
model, train_loader, val_loader, device, eval_iter)
|
||||
train_losses.append(train_loss)
|
||||
val_losses.append(val_loss)
|
||||
print(f"Ep {epoch+1} (Step {global_step:06d}): "
|
||||
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
|
||||
|
||||
# Calculate accuracy after each epoch
|
||||
train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter)
|
||||
val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter)
|
||||
print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
|
||||
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
|
||||
train_accs.append(train_accuracy)
|
||||
val_accs.append(val_accuracy)
|
||||
|
||||
return train_losses, val_losses, train_accs, val_accs, examples_seen
|
||||
|
||||
|
||||
def plot_values(epochs_seen, examples_seen, train_values, val_values, label="loss"):
|
||||
fig, ax1 = plt.subplots(figsize=(5, 3))
|
||||
|
||||
# Plot training and validation loss against epochs
|
||||
ax1.plot(epochs_seen, train_values, label=f"Training {label}")
|
||||
ax1.plot(epochs_seen, val_values, linestyle="-.", label=f"Validation {label}")
|
||||
ax1.set_xlabel("Epochs")
|
||||
ax1.set_ylabel(label.capitalize())
|
||||
ax1.legend()
|
||||
|
||||
# Create a second x-axis for tokens seen
|
||||
ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis
|
||||
ax2.plot(examples_seen, train_values, alpha=0) # Invisible plot for aligning ticks
|
||||
ax2.set_xlabel("Examples seen")
|
||||
|
||||
fig.tight_layout() # Adjust layout to make room
|
||||
plt.savefig(f"{label}-plot.pdf")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
########################################
|
||||
# Download and prepare dataset
|
||||
########################################
|
||||
|
||||
url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
|
||||
zip_path = "sms_spam_collection.zip"
|
||||
extracted_path = "sms_spam_collection"
|
||||
data_file_path = Path(extracted_path) / "SMSSpamCollection.tsv"
|
||||
|
||||
download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path)
|
||||
df = pd.read_csv(data_file_path, sep="\t", header=None, names=["Label", "Text"])
|
||||
balanced_df = create_balanced_dataset(df)
|
||||
balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1})
|
||||
|
||||
train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1)
|
||||
train_df.to_csv("train.csv", index=None)
|
||||
validation_df.to_csv("validation.csv", index=None)
|
||||
test_df.to_csv("test.csv", index=None)
|
||||
|
||||
########################################
|
||||
# Create data loaders
|
||||
########################################
|
||||
tokenizer = tiktoken.get_encoding("gpt2")
|
||||
|
||||
train_dataset = SpamDataset(
|
||||
csv_file="train.csv",
|
||||
max_length=None,
|
||||
tokenizer=tokenizer
|
||||
)
|
||||
|
||||
val_dataset = SpamDataset(
|
||||
csv_file="validation.csv",
|
||||
max_length=train_dataset.max_length,
|
||||
tokenizer=tokenizer
|
||||
)
|
||||
|
||||
test_dataset = SpamDataset(
|
||||
csv_file="test.csv",
|
||||
max_length=train_dataset.max_length,
|
||||
tokenizer=tokenizer
|
||||
)
|
||||
|
||||
num_workers = 0
|
||||
batch_size = 8
|
||||
|
||||
torch.manual_seed(123)
|
||||
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=num_workers,
|
||||
drop_last=True,
|
||||
)
|
||||
|
||||
val_loader = DataLoader(
|
||||
dataset=val_dataset,
|
||||
batch_size=batch_size,
|
||||
num_workers=num_workers,
|
||||
drop_last=False,
|
||||
)
|
||||
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
num_workers=num_workers,
|
||||
drop_last=False,
|
||||
)
|
||||
|
||||
########################################
|
||||
# Load pretrained model
|
||||
########################################
|
||||
|
||||
CHOOSE_MODEL = "gpt2-small (124M)"
|
||||
INPUT_PROMPT = "Every effort moves"
|
||||
|
||||
BASE_CONFIG = {
|
||||
"vocab_size": 50257, # Vocabulary size
|
||||
"context_length": 1024, # Context length
|
||||
"drop_rate": 0.0, # Dropout rate
|
||||
"qkv_bias": True # Query-key-value bias
|
||||
}
|
||||
|
||||
model_configs = {
|
||||
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
|
||||
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
|
||||
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
|
||||
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
|
||||
}
|
||||
|
||||
BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
|
||||
|
||||
model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
|
||||
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
|
||||
|
||||
model = GPTModel(BASE_CONFIG)
|
||||
load_weights_into_gpt(model, params)
|
||||
model.eval()
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model.to(device)
|
||||
|
||||
########################################
|
||||
# Modify and pretrained model
|
||||
########################################
|
||||
|
||||
for param in model.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
torch.manual_seed(123)
|
||||
|
||||
num_classes = 2
|
||||
model.out_head = torch.nn.Linear(in_features=BASE_CONFIG["emb_dim"], out_features=num_classes)
|
||||
|
||||
for param in model.trf_blocks[-1].parameters():
|
||||
param.requires_grad = True
|
||||
|
||||
for param in model.final_norm.parameters():
|
||||
param.requires_grad = True
|
||||
|
||||
########################################
|
||||
# Finetune modified model
|
||||
########################################
|
||||
|
||||
start_time = time.time()
|
||||
torch.manual_seed(123)
|
||||
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
|
||||
|
||||
num_epochs = 5
|
||||
train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
|
||||
model, train_loader, val_loader, optimizer, device,
|
||||
num_epochs=num_epochs, eval_freq=50, eval_iter=5,
|
||||
tokenizer=tokenizer
|
||||
)
|
||||
|
||||
end_time = time.time()
|
||||
execution_time_minutes = (end_time - start_time) / 60
|
||||
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
|
||||
|
||||
########################################
|
||||
# Plot results
|
||||
########################################
|
||||
|
||||
epochs_tensor = torch.linspace(0, num_epochs, len(train_losses))
|
||||
examples_seen_tensor = torch.linspace(0, examples_seen, len(train_losses))
|
||||
|
||||
plot_values(epochs_tensor, examples_seen_tensor, train_losses, val_losses)
|
Loading…
x
Reference in New Issue
Block a user