mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-12-26 22:52:33 +00:00
Add setup video tutorial (#547)
* Add setup video tutorial * updated link checks * updated link checks
This commit is contained in:
parent
cd5cf8112b
commit
8939fdc846
11
.github/workflows/check-links.yml
vendored
11
.github/workflows/check-links.yml
vendored
@ -30,6 +30,15 @@ jobs:
|
||||
- name: Check links
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
pytest --ruff --check-links ./ --check-links-ignore "https://platform.openai.com/*" --check-links-ignore "https://openai.com/*" --check-links-ignore "https://arena.lmsys.org" --check-links-ignore https://unsloth.ai/blog/gradient --check-links-ignore "https://www.reddit.com/r/*" --check-links-ignore "https://code.visualstudio.com/*" --check-links-ignore https://arxiv.org/* --check-links-ignore "https://ai.stanford.edu/~amaas/data/sentiment/"
|
||||
pytest --ruff --check-links ./ \
|
||||
--check-links-ignore "https://platform.openai.com/*" \
|
||||
--check-links-ignore "https://openai.com/*" \
|
||||
--check-links-ignore "https://arena.lmsys.org" \
|
||||
--check-links-ignore "https://unsloth.ai/blog/gradient" \
|
||||
--check-links-ignore "https://www.reddit.com/r/*" \
|
||||
--check-links-ignore "https://code.visualstudio.com/*" \
|
||||
--check-links-ignore "https://arxiv.org/*" \
|
||||
--check-links-ignore "https://ai.stanford.edu/~amaas/data/sentiment/" \
|
||||
--check-links-ignore "https://x.com/*"
|
||||
# pytest --check-links ./ --check-links-ignore "https://platform.openai.com/*" --check-links-ignore "https://arena.lmsys.org" --retries 2 --retry-delay 5
|
||||
|
||||
|
||||
@ -10,7 +10,17 @@ There is no code in this chapter.
|
||||
|
||||
## Bonus Materials
|
||||
|
||||
As optional bonus material, below is a video tutorial where I explain the LLM development lifecycle covered in this book:
|
||||
In the video below, I share my personal approach to setting up a Python environment on my computer:
|
||||
|
||||
<br>
|
||||
<br>
|
||||
|
||||
[](https://www.youtube.com/watch?v=yAcWnfsZhzo)
|
||||
|
||||
<br>
|
||||
<br>
|
||||
|
||||
As an optional bonus, the following video tutorial provides an overview of the LLM development lifecycle covered in this book:
|
||||
|
||||
<br>
|
||||
<br>
|
||||
|
||||
@ -19,8 +19,16 @@ pip install -r requirements.txt
|
||||
> `pip install uv && uv pip install --system -r https://raw.githubusercontent.com/rasbt/LLMs-from-scratch/refs/heads/main/requirements.txt`
|
||||
|
||||
|
||||
|
||||
|
||||
In the video below, I share my personal approach to setting up a Python environment on my computer:
|
||||
|
||||
<br>
|
||||
<br>
|
||||
|
||||
[](https://www.youtube.com/watch?v=yAcWnfsZhzo)
|
||||
|
||||
|
||||
|
||||
# Local Setup
|
||||
|
||||
This section provides recommendations for running the code in this book locally. Note that the code in the main chapters of this book is designed to run on conventional laptops within a reasonable timeframe and does not require specialized hardware. I tested all main chapters on an M3 MacBook Air laptop. Additionally, if your laptop or desktop computer has an NVIDIA GPU, the code will automatically take advantage of it.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user