mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-15 04:01:44 +00:00
Add standalone instruction finetuning script (#233)
This commit is contained in:
parent
c595f3da3f
commit
8ccca3a882
@ -8,4 +8,50 @@
|
||||
|
||||
### Optional Code
|
||||
|
||||
- [load-finetuned-model.ipynb](load-finetuned-model.ipynb) is a standalone Jupyter notebook to load the instruction finetuned model we created in this chapter
|
||||
- [load-finetuned-model.ipynb](load-finetuned-model.ipynb) is a standalone Jupyter notebook to load the instruction finetuned model we created in this chapter
|
||||
|
||||
- [gpt-instruction-finetuning.py](gpt-instruction-finetuning.py) is a standalone Python script to instruction finetune the model as described in the main chapter
|
||||
|
||||
Usage:
|
||||
|
||||
```bash
|
||||
python gpt-instruction-finetuning.py
|
||||
```
|
||||
|
||||
```
|
||||
matplotlib version: 3.9.0
|
||||
tiktoken version: 0.7.0
|
||||
torch version: 2.3.1
|
||||
tqdm version: 4.66.4
|
||||
tensorflow version: 2.16.1
|
||||
--------------------------------------------------
|
||||
Training set length: 935
|
||||
Validation set length: 55
|
||||
Test set length: 110
|
||||
--------------------------------------------------
|
||||
Device: cpu
|
||||
File already exists and is up-to-date: gpt2/355M/checkpoint
|
||||
File already exists and is up-to-date: gpt2/355M/encoder.json
|
||||
File already exists and is up-to-date: gpt2/355M/hparams.json
|
||||
File already exists and is up-to-date: gpt2/355M/model.ckpt.data-00000-of-00001
|
||||
File already exists and is up-to-date: gpt2/355M/model.ckpt.index
|
||||
File already exists and is up-to-date: gpt2/355M/model.ckpt.meta
|
||||
File already exists and is up-to-date: gpt2/355M/vocab.bpe
|
||||
Loaded model: gpt2-medium (355M)
|
||||
--------------------------------------------------
|
||||
Initial losses
|
||||
Training loss: 3.839039182662964
|
||||
Validation loss: 3.7619192123413088
|
||||
Ep 1 (Step 000000): Train loss 2.611, Val loss 2.668
|
||||
Ep 1 (Step 000005): Train loss 1.161, Val loss 1.131
|
||||
Ep 1 (Step 000010): Train loss 0.939, Val loss 0.973
|
||||
...
|
||||
Training completed in 15.66 minutes.
|
||||
Plot saved as loss-plot-standalone.pdf
|
||||
--------------------------------------------------
|
||||
Generating responses
|
||||
100%|██████████████████████████████████████████████████████████████████████████| 110/110 [06:57<00:00, 3.80s/it]
|
||||
Responses saved as instruction-data-with-response-standalone.json
|
||||
Model saved as gpt2-medium355M-sft-standalone.pth
|
||||
```
|
||||
|
||||
|
@ -426,7 +426,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_portion = int(len(data) * 0.85) # 85% for training\n",
|
||||
"test_portion = int(len(data) * 0.1) # 10% for testing\n",
|
||||
"test_portion = int(len(data) * 0.1) # 10% for testing\n",
|
||||
"val_portion = len(data) - train_portion - test_portion # Remaining 5% for validation\n",
|
||||
"\n",
|
||||
"train_data = data[:train_portion]\n",
|
||||
@ -1166,7 +1166,8 @@
|
||||
" batch_size=batch_size,\n",
|
||||
" collate_fn=customized_collate_fn,\n",
|
||||
" shuffle=True,\n",
|
||||
" drop_last=True\n",
|
||||
" drop_last=True,\n",
|
||||
" num_workers=num_workers\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
@ -1185,7 +1186,8 @@
|
||||
" batch_size=batch_size,\n",
|
||||
" collate_fn=customized_collate_fn,\n",
|
||||
" shuffle=False,\n",
|
||||
" drop_last=False\n",
|
||||
" drop_last=False,\n",
|
||||
" num_workers=num_workers\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"test_dataset = InstructionDataset(test_data, tokenizer)\n",
|
||||
@ -1194,7 +1196,8 @@
|
||||
" batch_size=batch_size,\n",
|
||||
" collate_fn=customized_collate_fn,\n",
|
||||
" shuffle=False,\n",
|
||||
" drop_last=False\n",
|
||||
" drop_last=False,\n",
|
||||
" num_workers=num_workers\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
|
307
ch07/01_main-chapter-code/gpt-instruction-finetuning.py
Normal file
307
ch07/01_main-chapter-code/gpt-instruction-finetuning.py
Normal file
@ -0,0 +1,307 @@
|
||||
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||||
# Source for "Build a Large Language Model From Scratch"
|
||||
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||||
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||||
#
|
||||
# A minimal instruction finetuning file based on the code in chapter 7
|
||||
|
||||
from functools import partial
|
||||
from importlib.metadata import version
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
import urllib
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import tiktoken
|
||||
import torch
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from tqdm import tqdm
|
||||
|
||||
# Import from local files in this folder
|
||||
from gpt_download import download_and_load_gpt2
|
||||
from previous_chapters import (
|
||||
calc_loss_loader,
|
||||
generate,
|
||||
GPTModel,
|
||||
load_weights_into_gpt,
|
||||
text_to_token_ids,
|
||||
train_model_simple,
|
||||
token_ids_to_text
|
||||
)
|
||||
|
||||
|
||||
class InstructionDataset(Dataset):
|
||||
def __init__(self, data, tokenizer):
|
||||
self.data = data
|
||||
|
||||
# Pre-tokenize texts
|
||||
self.encoded_texts = []
|
||||
for entry in data:
|
||||
instruction_plus_input = format_input(entry)
|
||||
response_text = f"\n\n### Response:\n{entry['output']}"
|
||||
full_text = instruction_plus_input + response_text
|
||||
self.encoded_texts.append(
|
||||
tokenizer.encode(full_text)
|
||||
)
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.encoded_texts[index]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
|
||||
def custom_collate_fn(
|
||||
batch,
|
||||
pad_token_id=50256,
|
||||
ignore_index=-100,
|
||||
allowed_max_length=None,
|
||||
device="cpu"
|
||||
):
|
||||
# Find the longest sequence in the batch
|
||||
batch_max_length = max(len(item)+1 for item in batch)
|
||||
|
||||
# Pad and prepare inputs and targets
|
||||
inputs_lst, targets_lst = [], []
|
||||
|
||||
for item in batch:
|
||||
new_item = item.copy()
|
||||
# Add an <|endoftext|> token
|
||||
new_item += [pad_token_id]
|
||||
# Pad sequences to max_length
|
||||
padded = new_item + [pad_token_id] * (batch_max_length - len(new_item))
|
||||
inputs = torch.tensor(padded[:-1]) # Truncate the last token for inputs
|
||||
targets = torch.tensor(padded[1:]) # Shift +1 to the right for targets
|
||||
|
||||
# New: Replace all but the first padding tokens in targets by ignore_index
|
||||
mask = targets == pad_token_id
|
||||
indices = torch.nonzero(mask).squeeze()
|
||||
if indices.numel() > 1:
|
||||
targets[indices[1:]] = ignore_index
|
||||
|
||||
# New: Optionally truncate to maximum sequence length
|
||||
if allowed_max_length is not None:
|
||||
inputs = inputs[:allowed_max_length]
|
||||
targets = targets[:allowed_max_length]
|
||||
|
||||
inputs_lst.append(inputs)
|
||||
targets_lst.append(targets)
|
||||
|
||||
# Convert list of inputs and targets to tensors and transfer to target device
|
||||
inputs_tensor = torch.stack(inputs_lst).to(device)
|
||||
targets_tensor = torch.stack(targets_lst).to(device)
|
||||
|
||||
return inputs_tensor, targets_tensor
|
||||
|
||||
|
||||
def download_and_load_file(file_path, url):
|
||||
|
||||
if not os.path.exists(file_path):
|
||||
with urllib.request.urlopen(url) as response:
|
||||
text_data = response.read().decode("utf-8")
|
||||
with open(file_path, "w", encoding="utf-8") as file:
|
||||
file.write(text_data)
|
||||
else:
|
||||
with open(file_path, "r", encoding="utf-8") as file:
|
||||
text_data = file.read()
|
||||
|
||||
with open(file_path, "r") as file:
|
||||
data = json.load(file)
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def format_input(entry):
|
||||
instruction_text = (
|
||||
f"Below is an instruction that describes a task. "
|
||||
f"Write a response that appropriately completes the request."
|
||||
f"\n\n### Instruction:\n{entry['instruction']}"
|
||||
)
|
||||
|
||||
input_text = f"\n\n### Input:\n{entry['input']}" if entry["input"] else ""
|
||||
|
||||
return instruction_text + input_text
|
||||
|
||||
|
||||
def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
|
||||
fig, ax1 = plt.subplots(figsize=(12, 6))
|
||||
|
||||
# Plot training and validation loss against epochs
|
||||
ax1.plot(epochs_seen, train_losses, label="Training loss")
|
||||
ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss")
|
||||
ax1.set_xlabel("Epochs")
|
||||
ax1.set_ylabel("Loss")
|
||||
ax1.legend(loc="upper right")
|
||||
|
||||
# Create a second x-axis for tokens seen
|
||||
ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis
|
||||
ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks
|
||||
ax2.set_xlabel("Tokens seen")
|
||||
|
||||
fig.tight_layout() # Adjust layout to make room
|
||||
plot_name = "loss-plot-standalone.pdf"
|
||||
print(f"Plot saved as {plot_name}")
|
||||
plt.savefig(plot_name)
|
||||
# plt.show()
|
||||
|
||||
|
||||
def main():
|
||||
#######################################
|
||||
# Print package versions
|
||||
#######################################
|
||||
print()
|
||||
pkgs = [
|
||||
"matplotlib", # Plotting library
|
||||
"tiktoken", # Tokenizer
|
||||
"torch", # Deep learning library
|
||||
"tqdm", # Progress bar
|
||||
"tensorflow", # For OpenAI's pretrained weights
|
||||
]
|
||||
for p in pkgs:
|
||||
print(f"{p} version: {version(p)}")
|
||||
print(50*"-")
|
||||
|
||||
#######################################
|
||||
# Download and prepare dataset
|
||||
#######################################
|
||||
file_path = "instruction-data.json"
|
||||
url = "https://raw.githubusercontent.com/rasbt/LLMs-from-scratch/main/ch07/01_main-chapter-code/instruction-data.json"
|
||||
data = download_and_load_file(file_path, url)
|
||||
|
||||
train_portion = int(len(data) * 0.85) # 85% for training
|
||||
test_portion = int(len(data) * 0.1) # 10% for testing
|
||||
|
||||
train_data = data[:train_portion]
|
||||
test_data = data[train_portion:train_portion + test_portion]
|
||||
val_data = data[train_portion + test_portion:]
|
||||
|
||||
print("Training set length:", len(train_data))
|
||||
print("Validation set length:", len(val_data))
|
||||
print("Test set length:", len(test_data))
|
||||
print(50*"-")
|
||||
|
||||
tokenizer = tiktoken.get_encoding("gpt2")
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
print("Device:", device)
|
||||
customized_collate_fn = partial(custom_collate_fn, device=device, allowed_max_length=1024)
|
||||
|
||||
num_workers = 0
|
||||
batch_size = 8
|
||||
|
||||
torch.manual_seed(123)
|
||||
|
||||
train_dataset = InstructionDataset(train_data, tokenizer)
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=batch_size,
|
||||
collate_fn=customized_collate_fn,
|
||||
shuffle=True,
|
||||
drop_last=True,
|
||||
num_workers=num_workers
|
||||
)
|
||||
|
||||
val_dataset = InstructionDataset(val_data, tokenizer)
|
||||
val_loader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=batch_size,
|
||||
collate_fn=customized_collate_fn,
|
||||
shuffle=False,
|
||||
drop_last=False,
|
||||
num_workers=num_workers
|
||||
)
|
||||
|
||||
#######################################
|
||||
# Load pretrained model
|
||||
#######################################
|
||||
BASE_CONFIG = {
|
||||
"vocab_size": 50257, # Vocabulary size
|
||||
"context_length": 1024, # Context length
|
||||
"drop_rate": 0.0, # Dropout rate
|
||||
"qkv_bias": True # Query-key-value bias
|
||||
}
|
||||
|
||||
model_configs = {
|
||||
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
|
||||
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
|
||||
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
|
||||
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
|
||||
}
|
||||
|
||||
CHOOSE_MODEL = "gpt2-medium (355M)"
|
||||
|
||||
BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
|
||||
|
||||
model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
|
||||
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
|
||||
|
||||
model = GPTModel(BASE_CONFIG)
|
||||
load_weights_into_gpt(model, params)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
print("Loaded model:", CHOOSE_MODEL)
|
||||
print(50*"-")
|
||||
|
||||
#######################################
|
||||
# Finetuning the model
|
||||
#######################################
|
||||
print("Initial losses")
|
||||
with torch.no_grad():
|
||||
train_loss = calc_loss_loader(train_loader, model, device, num_batches=5)
|
||||
val_loss = calc_loss_loader(val_loader, model, device, num_batches=5)
|
||||
|
||||
print(" Training loss:", train_loss)
|
||||
print(" Validation loss:", val_loss)
|
||||
|
||||
start_time = time.time()
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=0.00005, weight_decay=0.1)
|
||||
num_epochs = 2
|
||||
|
||||
train_losses, val_losses, tokens_seen = train_model_simple(
|
||||
model, train_loader, val_loader, optimizer, device,
|
||||
num_epochs=num_epochs, eval_freq=5, eval_iter=5,
|
||||
start_context=format_input(val_data[0]), tokenizer=tokenizer
|
||||
)
|
||||
|
||||
end_time = time.time()
|
||||
execution_time_minutes = (end_time - start_time) / 60
|
||||
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
|
||||
|
||||
epochs_tensor = torch.linspace(0, num_epochs, len(train_losses))
|
||||
plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses)
|
||||
print(50*"-")
|
||||
|
||||
#######################################
|
||||
# Saving results
|
||||
#######################################
|
||||
print("Evaluating models")
|
||||
for i, entry in tqdm(enumerate(test_data), total=len(test_data)):
|
||||
|
||||
input_text = format_input(entry)
|
||||
|
||||
token_ids = generate(
|
||||
model=model,
|
||||
idx=text_to_token_ids(input_text, tokenizer).to(device),
|
||||
max_new_tokens=256,
|
||||
context_size=BASE_CONFIG["context_length"],
|
||||
eos_id=50256
|
||||
)
|
||||
generated_text = token_ids_to_text(token_ids, tokenizer)
|
||||
response_text = generated_text[len(input_text):].replace("### Response:", "").strip()
|
||||
|
||||
test_data[i]["model_response"] = response_text
|
||||
|
||||
test_data_path = "instruction-data-with-response-standalone.json"
|
||||
with open(test_data_path, "w") as file:
|
||||
json.dump(test_data, file, indent=4) # "indent" for pretty-printing
|
||||
print(f"Responses saved as {test_data_path}")
|
||||
|
||||
file_name = f"{re.sub(r'[ ()]', '', CHOOSE_MODEL) }-sft-standalone.pth"
|
||||
torch.save(model.state_dict(), file_name)
|
||||
print(f"Model saved as {file_name}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user