Auto download DPO dataset if not already available in path (#479)

* Auto download DPO dataset if not already available in path

* update tests to account for latest HF transformers release in unit tests

* pep 8
This commit is contained in:
Sebastian Raschka 2025-01-12 12:27:28 -06:00 committed by GitHub
parent 05f2a398b8
commit 992f3068d1
3 changed files with 66 additions and 89 deletions

View File

@ -1,74 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 9,
"id": "40d2405d-ee10-44ad-b20e-cf32078f926a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True | head dim: 1, tensor([]), tensor([])\n",
"True | head dim: 2, tensor([1.]), tensor([1.])\n",
"True | head dim: 3, tensor([1.]), tensor([1.])\n",
"True | head dim: 4, tensor([1.0000, 0.0100]), tensor([1.0000, 0.0100])\n",
"False | head dim: 5, tensor([1.0000, 0.0100]), tensor([1.0000, 0.0251])\n",
"True | head dim: 6, tensor([1.0000, 0.0464, 0.0022]), tensor([1.0000, 0.0464, 0.0022])\n",
"False | head dim: 7, tensor([1.0000, 0.0464, 0.0022]), tensor([1.0000, 0.0720, 0.0052])\n",
"True | head dim: 8, tensor([1.0000, 0.1000, 0.0100, 0.0010]), tensor([1.0000, 0.1000, 0.0100, 0.0010])\n",
"False | head dim: 9, tensor([1.0000, 0.1000, 0.0100, 0.0010]), tensor([1.0000, 0.1292, 0.0167, 0.0022])\n",
"True | head dim: 10, tensor([1.0000e+00, 1.5849e-01, 2.5119e-02, 3.9811e-03, 6.3096e-04]), tensor([1.0000e+00, 1.5849e-01, 2.5119e-02, 3.9811e-03, 6.3096e-04])\n",
"False | head dim: 11, tensor([1.0000e+00, 1.5849e-01, 2.5119e-02, 3.9811e-03, 6.3096e-04]), tensor([1.0000, 0.1874, 0.0351, 0.0066, 0.0012])\n"
]
}
],
"source": [
"import torch\n",
"\n",
"theta_base = 10_000\n",
"\n",
"for head_dim in range(1, 12):\n",
"\n",
" before = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
" after = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))\n",
" \n",
" s = f\"{torch.equal(before, after)} | head dim: {head_dim}, {before}, {after}\"\n",
" print(s)\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0abfbf38-93a4-4994-8e7e-a543477268a8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -10,14 +10,20 @@ import os
import sys
import types
import nbformat
from packaging import version
from typing import Optional, Tuple
import torch
import pytest
import transformers
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
# LitGPT code from https://github.com/Lightning-AI/litgpt/blob/main/litgpt/model.py
transformers_version = transformers.__version__
# LitGPT code function `litgpt_build_rope_cache` from https://github.com/Lightning-AI/litgpt/blob/main/litgpt/model.py
# LitGPT is licensed under Apache v2: https://github.com/Lightning-AI/litgpt/blob/main/LICENSE
def litgpt_build_rope_cache(
seq_len: int,
n_elem: int,
@ -143,6 +149,7 @@ def test_rope_llama2(notebook):
context_len = 4096
num_heads = 4
head_dim = 16
theta_base = 10_000
# Instantiate RoPE parameters
cos, sin = this_nb.precompute_rope_params(head_dim=head_dim, context_length=context_len)
@ -156,11 +163,24 @@ def test_rope_llama2(notebook):
keys_rot = this_nb.compute_rope(keys, cos, sin)
# Generate reference RoPE via HF
if version.parse(transformers_version) < version.parse("4.48"):
rot_emb = LlamaRotaryEmbedding(
dim=head_dim,
max_position_embeddings=context_len,
base=10_000
base=theta_base
)
else:
class RoPEConfig:
dim: int = head_dim
rope_theta = theta_base
max_position_embeddings: int = 8192
hidden_size = head_dim * num_heads
num_attention_heads = num_heads
config = RoPEConfig()
rot_emb = LlamaRotaryEmbedding(config=config)
position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
ref_cos, ref_sin = rot_emb(queries, position_ids)
ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)
@ -209,11 +229,22 @@ def test_rope_llama3(notebook):
keys_rot = nb1.compute_rope(keys, cos, sin)
# Generate reference RoPE via HF
if version.parse(transformers_version) < version.parse("4.48"):
rot_emb = LlamaRotaryEmbedding(
dim=head_dim,
max_position_embeddings=context_len,
base=theta_base
)
else:
class RoPEConfig:
dim: int = head_dim
rope_theta = theta_base
max_position_embeddings: int = 8192
hidden_size = head_dim * num_heads
num_attention_heads = num_heads
config = RoPEConfig()
rot_emb = LlamaRotaryEmbedding(config=config)
position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
ref_cos, ref_sin = rot_emb(queries, position_ids)

View File

@ -230,13 +230,34 @@
],
"source": [
"import json\n",
"import os\n",
"import urllib\n",
"\n",
"\n",
"file_path = \"instruction-data-with-preference.json\"\n",
"def download_and_load_file(file_path, url):\n",
"\n",
" if not os.path.exists(file_path):\n",
" with urllib.request.urlopen(url) as response:\n",
" text_data = response.read().decode(\"utf-8\")\n",
" with open(file_path, \"w\", encoding=\"utf-8\") as file:\n",
" file.write(text_data)\n",
" else:\n",
" with open(file_path, \"r\", encoding=\"utf-8\") as file:\n",
" text_data = file.read()\n",
"\n",
" with open(file_path, \"r\", encoding=\"utf-8\") as file:\n",
" data = json.load(file)\n",
"\n",
" return data\n",
"\n",
"\n",
"file_path = \"instruction-data-with-preference.json\"\n",
"url = (\n",
" \"https://raw.githubusercontent.com/rasbt/LLMs-from-scratch\"\n",
" \"/main/ch07/04_preference-tuning-with-dpo/instruction-data-with-preference.json\"\n",
")\n",
"\n",
"data = download_and_load_file(file_path, url)\n",
"print(\"Number of entries:\", len(data))"
]
},
@ -1546,7 +1567,6 @@
},
"outputs": [],
"source": [
"import os\n",
"from pathlib import Path\n",
"import shutil\n",
"\n",