diff --git a/appendix-A/02_installing-python-libraries/python_environment_check.py b/appendix-A/02_installing-python-libraries/python_environment_check.py index 52f214f..e113fb8 100644 --- a/appendix-A/02_installing-python-libraries/python_environment_check.py +++ b/appendix-A/02_installing-python-libraries/python_environment_check.py @@ -25,9 +25,10 @@ def get_packages(pkgs): except AttributeError: try: versions.append(imported.version_info) - except: + except AttributeError: try: - import importlib, importlib_metadata + import importlib + import importlib_metadata imported = importlib.import_module(p) version = importlib_metadata.version(p) versions.append(version) diff --git a/appendix-A/03_main-chapter-code/DDP-script.py b/appendix-A/03_main-chapter-code/DDP-script.py index f8557d3..f93ed32 100644 --- a/appendix-A/03_main-chapter-code/DDP-script.py +++ b/appendix-A/03_main-chapter-code/DDP-script.py @@ -91,11 +91,11 @@ def prepare_dataset(): train_loader = DataLoader( dataset=train_ds, batch_size=2, - shuffle=False, # NEW: False because of DistributedSampler below + shuffle=False, # NEW: False because of DistributedSampler below pin_memory=True, drop_last=True, # NEW: chunk batches across GPUs without overlapping samples: - sampler=DistributedSampler(train_ds) # NEW + sampler=DistributedSampler(train_ds) # NEW ) test_loader = DataLoader( dataset=test_ds, @@ -108,14 +108,14 @@ def prepare_dataset(): # NEW: wrapper def main(rank, world_size, num_epochs): - ddp_setup(rank, world_size) # NEW: initialize process groups + ddp_setup(rank, world_size) # NEW: initialize process groups train_loader, test_loader = prepare_dataset() model = NeuralNetwork(num_inputs=2, num_outputs=2) model.to(rank) optimizer = torch.optim.SGD(model.parameters(), lr=0.5) - model = DDP(model, device_ids=[rank]) # NEW: wrap model with DDP + model = DDP(model, device_ids=[rank]) # NEW: wrap model with DDP # the core model is now accessible as model.module for epoch in range(num_epochs): @@ -123,15 +123,15 @@ def main(rank, world_size, num_epochs): model.train() for features, labels in train_loader: - features, labels = features.to(rank), labels.to(rank) # New: use rank + features, labels = features.to(rank), labels.to(rank) # New: use rank logits = model(features) - loss = F.cross_entropy(logits, labels) # Loss function + loss = F.cross_entropy(logits, labels) # Loss function optimizer.zero_grad() loss.backward() optimizer.step() - ### LOGGING + # LOGGING print(f"[GPU{rank}] Epoch: {epoch+1:03d}/{num_epochs:03d}" f" | Batchsize {labels.shape[0]:03d}" f" | Train/Val Loss: {loss:.2f}") @@ -142,7 +142,7 @@ def main(rank, world_size, num_epochs): test_acc = compute_accuracy(model, test_loader, device=rank) print(f"[GPU{rank}] Test accuracy", test_acc) - destroy_process_group() # NEW: cleanly exit distributed mode + destroy_process_group() # NEW: cleanly exit distributed mode def compute_accuracy(model, dataloader, device): diff --git a/appendix-D/01_main-chapter-code/previous_chapters.py b/appendix-D/01_main-chapter-code/previous_chapters.py index ba18f50..6297085 100644 --- a/appendix-D/01_main-chapter-code/previous_chapters.py +++ b/appendix-D/01_main-chapter-code/previous_chapters.py @@ -36,7 +36,7 @@ class GPTDatasetV1(Dataset): return self.input_ids[idx], self.target_ids[idx] -def create_dataloader_v1(txt, batch_size=4, max_length=256, +def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True): # Initialize the tokenizer tokenizer = tiktoken.get_encoding("gpt2") @@ -80,7 +80,7 @@ class MultiHeadAttention(nn.Module): # We implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) - keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) + keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) values = values.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) @@ -102,7 +102,7 @@ class MultiHeadAttention(nn.Module): attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) - context_vec = (attn_weights @ values).transpose(1, 2) + context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.reshape(b, num_tokens, self.d_out) @@ -135,7 +135,7 @@ class GELU(nn.Module): def forward(self, x): return 0.5 * x * (1 + torch.tanh( - torch.sqrt(torch.tensor(2.0 / torch.pi)) * + torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3)) )) @@ -161,7 +161,7 @@ class TransformerBlock(nn.Module): d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], block_size=cfg["ctx_len"], - num_heads=cfg["n_heads"], + num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"]) self.ff = FeedForward(cfg) @@ -227,7 +227,7 @@ def generate_text_simple(model, idx, max_new_tokens, context_size): # Focus only on the last time step # (batch, n_token, vocab_size) becomes (batch, vocab_size) - logits = logits[:, -1, :] + logits = logits[:, -1, :] # Get the idx of the vocab entry with the highest logits value idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1) @@ -315,4 +315,4 @@ def text_to_token_ids(text, tokenizer): def token_ids_to_text(token_ids, tokenizer): flat = token_ids.squeeze(0) # remove batch dimension - return tokenizer.decode(flat.tolist()) \ No newline at end of file + return tokenizer.decode(flat.tolist()) diff --git a/ch02/02_bonus_bytepair-encoder/bpe_openai_gpt2.py b/ch02/02_bonus_bytepair-encoder/bpe_openai_gpt2.py index f3d9575..16e0ee2 100644 --- a/ch02/02_bonus_bytepair-encoder/bpe_openai_gpt2.py +++ b/ch02/02_bonus_bytepair-encoder/bpe_openai_gpt2.py @@ -1,39 +1,3 @@ -""" -Byte pair encoding utilities - -Code from https://github.com/openai/gpt-2/blob/master/src/encoder.py - -And modified code (download_vocab) from -https://github.com/openai/gpt-2/blob/master/download_model.py - -Modified MIT License - -Software Copyright (c) 2019 OpenAI - -We don’t claim ownership of the content you create with GPT-2, so it is yours to do with as you please. -We only ask that you use GPT-2 responsibly and clearly indicate your content was created using GPT-2. - -Permission is hereby granted, free of charge, to any person obtaining a copy of this software and -associated documentation files (the "Software"), to deal in the Software without restriction, -including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, -and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, -subject to the following conditions: - -The above copyright notice and this permission notice shall be included -in all copies or substantial portions of the Software. -The above copyright notice and this permission notice need not be included -with content created by the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, -INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS -BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, -TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE -OR OTHER DEALINGS IN THE SOFTWARE. - - -""" - import os import json import regex as re @@ -41,6 +5,7 @@ import requests from tqdm import tqdm from functools import lru_cache + @lru_cache() def bytes_to_unicode(): """ @@ -52,20 +17,21 @@ def bytes_to_unicode(): To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ - bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) + bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) - cs.append(2**8+n) + cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) -def get_pairs(word): - """Return set of symbol pairs in a word. +def get_pairs(word): + """ + Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() @@ -75,17 +41,18 @@ def get_pairs(word): prev_char = char return pairs + class Encoder: def __init__(self, encoder, bpe_merges, errors='replace'): self.encoder = encoder - self.decoder = {v:k for k,v in self.encoder.items()} - self.errors = errors # how to handle errors in decoding + self.decoder = {v: k for k, v in self.encoder.items()} + self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() - self.byte_decoder = {v:k for k, v in self.byte_encoder.items()} + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} - # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions + # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") def bpe(self, token): @@ -98,7 +65,7 @@ class Encoder: return token while True: - bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram @@ -109,12 +76,12 @@ class Encoder: j = word.index(first, i) new_word.extend(word[i:j]) i = j - except: + except ValueError: new_word.extend(word[i:]) break - if word[i] == first and i < len(word)-1 and word[i+1] == second: - new_word.append(first+second) + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) i += 2 else: new_word.append(word[i]) @@ -141,16 +108,14 @@ class Encoder: text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) return text + def get_encoder(model_name, models_dir): with open(os.path.join(models_dir, model_name, 'encoder.json'), 'r') as f: encoder = json.load(f) with open(os.path.join(models_dir, model_name, 'vocab.bpe'), 'r', encoding="utf-8") as f: bpe_data = f.read() bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]] - return Encoder( - encoder=encoder, - bpe_merges=bpe_merges, - ) + return Encoder(encoder=encoder, bpe_merges=bpe_merges) def download_vocab(): @@ -158,11 +123,10 @@ def download_vocab(): subdir = 'gpt2_model' if not os.path.exists(subdir): os.makedirs(subdir) - subdir = subdir.replace('\\','/') # needed for Windows + subdir = subdir.replace('\\', '/') # needed for Windows for filename in ['encoder.json', 'vocab.bpe']: - - r = requests.get("https://openaipublic.blob.core.windows.net/gpt-2/models/117M" + "/" + filename, stream=True) + r = requests.get("https://openaipublic.blob.core.windows.net/gpt-2/models/117M/" + filename, stream=True) with open(os.path.join(subdir, filename), 'wb') as f: file_size = int(r.headers["content-length"]) diff --git a/ch03/02_bonus_efficient-multihead-attention/ch03.py b/ch03/02_bonus_efficient-multihead-attention/ch03.py index 46e4bb2..1797fe3 100644 --- a/ch03/02_bonus_efficient-multihead-attention/ch03.py +++ b/ch03/02_bonus_efficient-multihead-attention/ch03.py @@ -8,33 +8,33 @@ class CausalAttention(nn.Module): super().__init__() self.d_out = d_out self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) - self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) + self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) - self.dropout = nn.Dropout(dropout) # New - self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1)) # New + self.dropout = nn.Dropout(dropout) # New + self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1)) # New def forward(self, x): - b, num_tokens, d_in = x.shape # New batch dimension b + b, num_tokens, d_in = x.shape # New batch dimension b keys = self.W_key(x) queries = self.W_query(x) values = self.W_value(x) - attn_scores = queries @ keys.transpose(1, 2) # Changed transpose + attn_scores = queries @ keys.transpose(1, 2) # Changed transpose attn_scores.masked_fill_( # New, _ ops are in-place - self.mask.bool()[:num_tokens, :num_tokens], -torch.inf) + self.mask.bool()[:num_tokens, :num_tokens], -torch.inf) attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) - attn_weights = self.dropout(attn_weights) # New + attn_weights = self.dropout(attn_weights) # New context_vec = attn_weights @ values return context_vec - - + + class MultiHeadAttentionWrapper(nn.Module): def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False): super().__init__() self.heads = nn.ModuleList( - [CausalAttention(d_in, d_out, block_size, dropout, qkv_bias) + [CausalAttention(d_in, d_out, block_size, dropout, qkv_bias) for _ in range(num_heads)] ) self.out_proj = nn.Linear(d_out*num_heads, d_out*num_heads) @@ -44,7 +44,6 @@ class MultiHeadAttentionWrapper(nn.Module): return self.out_proj(context_vec) - class MultiHeadAttention(nn.Module): def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False): super().__init__() @@ -52,7 +51,7 @@ class MultiHeadAttention(nn.Module): self.d_out = d_out self.num_heads = num_heads - self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim + self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) @@ -70,7 +69,7 @@ class MultiHeadAttention(nn.Module): # We implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) - keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) + keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) values = values.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) @@ -92,10 +91,10 @@ class MultiHeadAttention(nn.Module): attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) - context_vec = (attn_weights @ values).transpose(1, 2) + context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) - context_vec = self.out_proj(context_vec) # optional projection + context_vec = self.out_proj(context_vec) # optional projection - return context_vec \ No newline at end of file + return context_vec diff --git a/ch04/01_main-chapter-code/gpt.py b/ch04/01_main-chapter-code/gpt.py index 2c6ca71..33399b1 100644 --- a/ch04/01_main-chapter-code/gpt.py +++ b/ch04/01_main-chapter-code/gpt.py @@ -35,7 +35,7 @@ class GPTDatasetV1(Dataset): return self.input_ids[idx], self.target_ids[idx] -def create_dataloader_v1(txt, batch_size=4, max_length=256, +def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True): # Initialize the tokenizer tokenizer = tiktoken.get_encoding("gpt2") @@ -78,7 +78,7 @@ class MultiHeadAttention(nn.Module): # We implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) - keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) + keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) values = values.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) @@ -100,7 +100,7 @@ class MultiHeadAttention(nn.Module): attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) - context_vec = (attn_weights @ values).transpose(1, 2) + context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) @@ -132,7 +132,7 @@ class GELU(nn.Module): def forward(self, x): return 0.5 * x * (1 + torch.tanh( - torch.sqrt(torch.tensor(2.0 / torch.pi)) * + torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3)) )) @@ -158,7 +158,7 @@ class TransformerBlock(nn.Module): d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], block_size=cfg["ctx_len"], - num_heads=cfg["n_heads"], + num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"]) self.ff = FeedForward(cfg) @@ -224,7 +224,7 @@ def generate_text_simple(model, idx, max_new_tokens, context_size): # Focus only on the last time step # (batch, n_token, vocab_size) becomes (batch, vocab_size) - logits = logits[:, -1, :] + logits = logits[:, -1, :] # Get the idx of the vocab entry with the highest logits value idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1) diff --git a/ch04/01_main-chapter-code/previous_chapters.py b/ch04/01_main-chapter-code/previous_chapters.py index ec8c3c7..5e067a4 100644 --- a/ch04/01_main-chapter-code/previous_chapters.py +++ b/ch04/01_main-chapter-code/previous_chapters.py @@ -27,7 +27,7 @@ class GPTDatasetV1(Dataset): return self.input_ids[idx], self.target_ids[idx] -def create_dataloader_v1(txt, batch_size=4, max_length=256, +def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True): # Initialize the tokenizer tokenizer = tiktoken.get_encoding("gpt2") @@ -49,7 +49,7 @@ class MultiHeadAttention(nn.Module): self.d_out = d_out self.num_heads = num_heads - self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim + self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) @@ -61,13 +61,13 @@ class MultiHeadAttention(nn.Module): def forward(self, x): b, num_tokens, d_in = x.shape - keys = self.W_key(x) # Shape: (b, num_tokens, d_out) + keys = self.W_key(x) # Shape: (b, num_tokens, d_out) queries = self.W_query(x) values = self.W_value(x) # We implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) - keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) + keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) values = values.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) @@ -84,15 +84,15 @@ class MultiHeadAttention(nn.Module): # Use the mask to fill attention scores attn_scores.masked_fill_(mask_bool, -torch.inf) - + attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) - context_vec = (attn_weights @ values).transpose(1, 2) - + context_vec = (attn_weights @ values).transpose(1, 2) + # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) - context_vec = self.out_proj(context_vec) # optional projection + context_vec = self.out_proj(context_vec) # optional projection - return context_vec \ No newline at end of file + return context_vec diff --git a/ch05/01_main-chapter-code/previous_chapters.py b/ch05/01_main-chapter-code/previous_chapters.py index 610f6f4..996d0bb 100644 --- a/ch05/01_main-chapter-code/previous_chapters.py +++ b/ch05/01_main-chapter-code/previous_chapters.py @@ -100,7 +100,7 @@ class MultiHeadAttention(nn.Module): attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) - context_vec = (attn_weights @ values).transpose(1, 2) + context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.reshape(b, num_tokens, self.d_out) @@ -132,7 +132,7 @@ class GELU(nn.Module): def forward(self, x): return 0.5 * x * (1 + torch.tanh( - torch.sqrt(torch.tensor(2.0 / torch.pi)) * + torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3)) )) @@ -158,7 +158,7 @@ class TransformerBlock(nn.Module): d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], block_size=cfg["ctx_len"], - num_heads=cfg["n_heads"], + num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"]) self.ff = FeedForward(cfg) @@ -224,7 +224,7 @@ def generate_text_simple(model, idx, max_new_tokens, context_size): # Focus only on the last time step # (batch, n_token, vocab_size) becomes (batch, vocab_size) - logits = logits[:, -1, :] + logits = logits[:, -1, :] # Get the idx of the vocab entry with the highest logits value idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1) diff --git a/ch05/02_bonus_hparam_tuning/hparam_search.py b/ch05/02_bonus_hparam_tuning/hparam_search.py index 3e5ccfd..46199fd 100644 --- a/ch05/02_bonus_hparam_tuning/hparam_search.py +++ b/ch05/02_bonus_hparam_tuning/hparam_search.py @@ -159,7 +159,7 @@ if __name__ == "__main__": stride=GPT_CONFIG_124M["ctx_len"], drop_last=False, shuffle=False - ) + ) model = GPTModel(GPT_CONFIG_124M) model.to(device) @@ -199,4 +199,4 @@ if __name__ == "__main__": if not interrupted: print("Hyperparameter search completed.") print(f"Best hyperparameters: {best_hparams}") - print(f"Best Val loss: {best_val_loss} | Training loss {train_loss}") \ No newline at end of file + print(f"Best Val loss: {best_val_loss} | Training loss {train_loss}") diff --git a/ch05/02_bonus_hparam_tuning/previous_chapters.py b/ch05/02_bonus_hparam_tuning/previous_chapters.py index 2c6ca71..33399b1 100644 --- a/ch05/02_bonus_hparam_tuning/previous_chapters.py +++ b/ch05/02_bonus_hparam_tuning/previous_chapters.py @@ -35,7 +35,7 @@ class GPTDatasetV1(Dataset): return self.input_ids[idx], self.target_ids[idx] -def create_dataloader_v1(txt, batch_size=4, max_length=256, +def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True): # Initialize the tokenizer tokenizer = tiktoken.get_encoding("gpt2") @@ -78,7 +78,7 @@ class MultiHeadAttention(nn.Module): # We implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) - keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) + keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) values = values.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) @@ -100,7 +100,7 @@ class MultiHeadAttention(nn.Module): attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) - context_vec = (attn_weights @ values).transpose(1, 2) + context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) @@ -132,7 +132,7 @@ class GELU(nn.Module): def forward(self, x): return 0.5 * x * (1 + torch.tanh( - torch.sqrt(torch.tensor(2.0 / torch.pi)) * + torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3)) )) @@ -158,7 +158,7 @@ class TransformerBlock(nn.Module): d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], block_size=cfg["ctx_len"], - num_heads=cfg["n_heads"], + num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"]) self.ff = FeedForward(cfg) @@ -224,7 +224,7 @@ def generate_text_simple(model, idx, max_new_tokens, context_size): # Focus only on the last time step # (batch, n_token, vocab_size) becomes (batch, vocab_size) - logits = logits[:, -1, :] + logits = logits[:, -1, :] # Get the idx of the vocab entry with the highest logits value idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1) diff --git a/ch05/03_bonus_pretraining_on_gutenberg/prepare_dataset.py b/ch05/03_bonus_pretraining_on_gutenberg/prepare_dataset.py index 5548b58..1503511 100644 --- a/ch05/03_bonus_pretraining_on_gutenberg/prepare_dataset.py +++ b/ch05/03_bonus_pretraining_on_gutenberg/prepare_dataset.py @@ -63,4 +63,4 @@ if __name__ == "__main__": target_dir = "path_to_your_large_files" print(f"{len(all_files)} files to process.") - combine_files(all_files, args.output_dir) \ No newline at end of file + combine_files(all_files, args.output_dir) diff --git a/ch05/03_bonus_pretraining_on_gutenberg/pretraining_simple.py b/ch05/03_bonus_pretraining_on_gutenberg/pretraining_simple.py index d1763da..14a26f7 100644 --- a/ch05/03_bonus_pretraining_on_gutenberg/pretraining_simple.py +++ b/ch05/03_bonus_pretraining_on_gutenberg/pretraining_simple.py @@ -99,7 +99,7 @@ def train_model_simple(model, optimizer, device, n_epochs, max_length=GPT_CONFIG_124M["ctx_len"], stride=GPT_CONFIG_124M["ctx_len"] ) - print(f"Training ...") + print("Training ...") model.train() for input_batch, target_batch in train_loader: optimizer.zero_grad() diff --git a/ch05/03_bonus_pretraining_on_gutenberg/previous_chapters.py b/ch05/03_bonus_pretraining_on_gutenberg/previous_chapters.py index 4641ba4..fbe05ee 100644 --- a/ch05/03_bonus_pretraining_on_gutenberg/previous_chapters.py +++ b/ch05/03_bonus_pretraining_on_gutenberg/previous_chapters.py @@ -9,11 +9,11 @@ from torch.utils.data import Dataset, DataLoader import matplotlib.pyplot as plt - ##################################### # Chapter 2 ##################################### + class GPTDatasetV1(Dataset): def __init__(self, txt, tokenizer, max_length, stride): self.tokenizer = tokenizer @@ -310,5 +310,3 @@ def text_to_token_ids(text, tokenizer): def token_ids_to_text(token_ids, tokenizer): flat = token_ids.squeeze(0) # remove batch dimension return tokenizer.decode(flat.tolist()) - -