mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-15 04:01:44 +00:00
parent
e316cafd9f
commit
9d6da22ebb
@ -25,9 +25,10 @@ def get_packages(pkgs):
|
||||
except AttributeError:
|
||||
try:
|
||||
versions.append(imported.version_info)
|
||||
except:
|
||||
except AttributeError:
|
||||
try:
|
||||
import importlib, importlib_metadata
|
||||
import importlib
|
||||
import importlib_metadata
|
||||
imported = importlib.import_module(p)
|
||||
version = importlib_metadata.version(p)
|
||||
versions.append(version)
|
||||
|
@ -91,11 +91,11 @@ def prepare_dataset():
|
||||
train_loader = DataLoader(
|
||||
dataset=train_ds,
|
||||
batch_size=2,
|
||||
shuffle=False, # NEW: False because of DistributedSampler below
|
||||
shuffle=False, # NEW: False because of DistributedSampler below
|
||||
pin_memory=True,
|
||||
drop_last=True,
|
||||
# NEW: chunk batches across GPUs without overlapping samples:
|
||||
sampler=DistributedSampler(train_ds) # NEW
|
||||
sampler=DistributedSampler(train_ds) # NEW
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=test_ds,
|
||||
@ -108,14 +108,14 @@ def prepare_dataset():
|
||||
# NEW: wrapper
|
||||
def main(rank, world_size, num_epochs):
|
||||
|
||||
ddp_setup(rank, world_size) # NEW: initialize process groups
|
||||
ddp_setup(rank, world_size) # NEW: initialize process groups
|
||||
|
||||
train_loader, test_loader = prepare_dataset()
|
||||
model = NeuralNetwork(num_inputs=2, num_outputs=2)
|
||||
model.to(rank)
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=0.5)
|
||||
|
||||
model = DDP(model, device_ids=[rank]) # NEW: wrap model with DDP
|
||||
model = DDP(model, device_ids=[rank]) # NEW: wrap model with DDP
|
||||
# the core model is now accessible as model.module
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
@ -123,15 +123,15 @@ def main(rank, world_size, num_epochs):
|
||||
model.train()
|
||||
for features, labels in train_loader:
|
||||
|
||||
features, labels = features.to(rank), labels.to(rank) # New: use rank
|
||||
features, labels = features.to(rank), labels.to(rank) # New: use rank
|
||||
logits = model(features)
|
||||
loss = F.cross_entropy(logits, labels) # Loss function
|
||||
loss = F.cross_entropy(logits, labels) # Loss function
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
### LOGGING
|
||||
# LOGGING
|
||||
print(f"[GPU{rank}] Epoch: {epoch+1:03d}/{num_epochs:03d}"
|
||||
f" | Batchsize {labels.shape[0]:03d}"
|
||||
f" | Train/Val Loss: {loss:.2f}")
|
||||
@ -142,7 +142,7 @@ def main(rank, world_size, num_epochs):
|
||||
test_acc = compute_accuracy(model, test_loader, device=rank)
|
||||
print(f"[GPU{rank}] Test accuracy", test_acc)
|
||||
|
||||
destroy_process_group() # NEW: cleanly exit distributed mode
|
||||
destroy_process_group() # NEW: cleanly exit distributed mode
|
||||
|
||||
|
||||
def compute_accuracy(model, dataloader, device):
|
||||
|
@ -36,7 +36,7 @@ class GPTDatasetV1(Dataset):
|
||||
return self.input_ids[idx], self.target_ids[idx]
|
||||
|
||||
|
||||
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
||||
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
||||
stride=128, shuffle=True, drop_last=True):
|
||||
# Initialize the tokenizer
|
||||
tokenizer = tiktoken.get_encoding("gpt2")
|
||||
@ -80,7 +80,7 @@ class MultiHeadAttention(nn.Module):
|
||||
|
||||
# We implicitly split the matrix by adding a `num_heads` dimension
|
||||
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
|
||||
@ -102,7 +102,7 @@ class MultiHeadAttention(nn.Module):
|
||||
attn_weights = self.dropout(attn_weights)
|
||||
|
||||
# Shape: (b, num_tokens, num_heads, head_dim)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
|
||||
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||||
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
|
||||
@ -135,7 +135,7 @@ class GELU(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
return 0.5 * x * (1 + torch.tanh(
|
||||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||||
(x + 0.044715 * torch.pow(x, 3))
|
||||
))
|
||||
|
||||
@ -161,7 +161,7 @@ class TransformerBlock(nn.Module):
|
||||
d_in=cfg["emb_dim"],
|
||||
d_out=cfg["emb_dim"],
|
||||
block_size=cfg["ctx_len"],
|
||||
num_heads=cfg["n_heads"],
|
||||
num_heads=cfg["n_heads"],
|
||||
dropout=cfg["drop_rate"],
|
||||
qkv_bias=cfg["qkv_bias"])
|
||||
self.ff = FeedForward(cfg)
|
||||
@ -227,7 +227,7 @@ def generate_text_simple(model, idx, max_new_tokens, context_size):
|
||||
|
||||
# Focus only on the last time step
|
||||
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
|
||||
logits = logits[:, -1, :]
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
# Get the idx of the vocab entry with the highest logits value
|
||||
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
|
||||
@ -315,4 +315,4 @@ def text_to_token_ids(text, tokenizer):
|
||||
|
||||
def token_ids_to_text(token_ids, tokenizer):
|
||||
flat = token_ids.squeeze(0) # remove batch dimension
|
||||
return tokenizer.decode(flat.tolist())
|
||||
return tokenizer.decode(flat.tolist())
|
||||
|
@ -1,39 +1,3 @@
|
||||
"""
|
||||
Byte pair encoding utilities
|
||||
|
||||
Code from https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
|
||||
And modified code (download_vocab) from
|
||||
https://github.com/openai/gpt-2/blob/master/download_model.py
|
||||
|
||||
Modified MIT License
|
||||
|
||||
Software Copyright (c) 2019 OpenAI
|
||||
|
||||
We don’t claim ownership of the content you create with GPT-2, so it is yours to do with as you please.
|
||||
We only ask that you use GPT-2 responsibly and clearly indicate your content was created using GPT-2.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||||
associated documentation files (the "Software"), to deal in the Software without restriction,
|
||||
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
|
||||
subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
The above copyright notice and this permission notice need not be included
|
||||
with content created by the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
||||
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
|
||||
OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
import os
|
||||
import json
|
||||
import regex as re
|
||||
@ -41,6 +5,7 @@ import requests
|
||||
from tqdm import tqdm
|
||||
from functools import lru_cache
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
@ -52,20 +17,21 @@ def bytes_to_unicode():
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
cs.append(2**8 + n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
def get_pairs(word):
|
||||
"""Return set of symbol pairs in a word.
|
||||
|
||||
def get_pairs(word):
|
||||
"""
|
||||
Return set of symbol pairs in a word.
|
||||
Word is represented as tuple of symbols (symbols being variable-length strings).
|
||||
"""
|
||||
pairs = set()
|
||||
@ -75,17 +41,18 @@ def get_pairs(word):
|
||||
prev_char = char
|
||||
return pairs
|
||||
|
||||
|
||||
class Encoder:
|
||||
def __init__(self, encoder, bpe_merges, errors='replace'):
|
||||
self.encoder = encoder
|
||||
self.decoder = {v:k for k,v in self.encoder.items()}
|
||||
self.errors = errors # how to handle errors in decoding
|
||||
self.decoder = {v: k for k, v in self.encoder.items()}
|
||||
self.errors = errors # how to handle errors in decoding
|
||||
self.byte_encoder = bytes_to_unicode()
|
||||
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
|
||||
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
||||
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
||||
self.cache = {}
|
||||
|
||||
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
||||
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
||||
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
||||
|
||||
def bpe(self, token):
|
||||
@ -98,7 +65,7 @@ class Encoder:
|
||||
return token
|
||||
|
||||
while True:
|
||||
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
||||
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
||||
if bigram not in self.bpe_ranks:
|
||||
break
|
||||
first, second = bigram
|
||||
@ -109,12 +76,12 @@ class Encoder:
|
||||
j = word.index(first, i)
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
except:
|
||||
except ValueError:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
|
||||
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
||||
new_word.append(first+second)
|
||||
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||||
new_word.append(first + second)
|
||||
i += 2
|
||||
else:
|
||||
new_word.append(word[i])
|
||||
@ -141,16 +108,14 @@ class Encoder:
|
||||
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
|
||||
return text
|
||||
|
||||
|
||||
def get_encoder(model_name, models_dir):
|
||||
with open(os.path.join(models_dir, model_name, 'encoder.json'), 'r') as f:
|
||||
encoder = json.load(f)
|
||||
with open(os.path.join(models_dir, model_name, 'vocab.bpe'), 'r', encoding="utf-8") as f:
|
||||
bpe_data = f.read()
|
||||
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
|
||||
return Encoder(
|
||||
encoder=encoder,
|
||||
bpe_merges=bpe_merges,
|
||||
)
|
||||
return Encoder(encoder=encoder, bpe_merges=bpe_merges)
|
||||
|
||||
|
||||
def download_vocab():
|
||||
@ -158,11 +123,10 @@ def download_vocab():
|
||||
subdir = 'gpt2_model'
|
||||
if not os.path.exists(subdir):
|
||||
os.makedirs(subdir)
|
||||
subdir = subdir.replace('\\','/') # needed for Windows
|
||||
subdir = subdir.replace('\\', '/') # needed for Windows
|
||||
|
||||
for filename in ['encoder.json', 'vocab.bpe']:
|
||||
|
||||
r = requests.get("https://openaipublic.blob.core.windows.net/gpt-2/models/117M" + "/" + filename, stream=True)
|
||||
r = requests.get("https://openaipublic.blob.core.windows.net/gpt-2/models/117M/" + filename, stream=True)
|
||||
|
||||
with open(os.path.join(subdir, filename), 'wb') as f:
|
||||
file_size = int(r.headers["content-length"])
|
||||
|
@ -8,33 +8,33 @@ class CausalAttention(nn.Module):
|
||||
super().__init__()
|
||||
self.d_out = d_out
|
||||
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.dropout = nn.Dropout(dropout) # New
|
||||
self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1)) # New
|
||||
self.dropout = nn.Dropout(dropout) # New
|
||||
self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1)) # New
|
||||
|
||||
def forward(self, x):
|
||||
b, num_tokens, d_in = x.shape # New batch dimension b
|
||||
b, num_tokens, d_in = x.shape # New batch dimension b
|
||||
keys = self.W_key(x)
|
||||
queries = self.W_query(x)
|
||||
values = self.W_value(x)
|
||||
|
||||
attn_scores = queries @ keys.transpose(1, 2) # Changed transpose
|
||||
attn_scores = queries @ keys.transpose(1, 2) # Changed transpose
|
||||
attn_scores.masked_fill_( # New, _ ops are in-place
|
||||
self.mask.bool()[:num_tokens, :num_tokens], -torch.inf)
|
||||
self.mask.bool()[:num_tokens, :num_tokens], -torch.inf)
|
||||
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
||||
attn_weights = self.dropout(attn_weights) # New
|
||||
attn_weights = self.dropout(attn_weights) # New
|
||||
|
||||
context_vec = attn_weights @ values
|
||||
return context_vec
|
||||
|
||||
|
||||
|
||||
|
||||
class MultiHeadAttentionWrapper(nn.Module):
|
||||
|
||||
def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False):
|
||||
super().__init__()
|
||||
self.heads = nn.ModuleList(
|
||||
[CausalAttention(d_in, d_out, block_size, dropout, qkv_bias)
|
||||
[CausalAttention(d_in, d_out, block_size, dropout, qkv_bias)
|
||||
for _ in range(num_heads)]
|
||||
)
|
||||
self.out_proj = nn.Linear(d_out*num_heads, d_out*num_heads)
|
||||
@ -44,7 +44,6 @@ class MultiHeadAttentionWrapper(nn.Module):
|
||||
return self.out_proj(context_vec)
|
||||
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False):
|
||||
super().__init__()
|
||||
@ -52,7 +51,7 @@ class MultiHeadAttention(nn.Module):
|
||||
|
||||
self.d_out = d_out
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
||||
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
||||
|
||||
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
@ -70,7 +69,7 @@ class MultiHeadAttention(nn.Module):
|
||||
|
||||
# We implicitly split the matrix by adding a `num_heads` dimension
|
||||
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
|
||||
@ -92,10 +91,10 @@ class MultiHeadAttention(nn.Module):
|
||||
attn_weights = self.dropout(attn_weights)
|
||||
|
||||
# Shape: (b, num_tokens, num_heads, head_dim)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
|
||||
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||||
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
|
||||
context_vec = self.out_proj(context_vec) # optional projection
|
||||
context_vec = self.out_proj(context_vec) # optional projection
|
||||
|
||||
return context_vec
|
||||
return context_vec
|
||||
|
@ -35,7 +35,7 @@ class GPTDatasetV1(Dataset):
|
||||
return self.input_ids[idx], self.target_ids[idx]
|
||||
|
||||
|
||||
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
||||
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
||||
stride=128, shuffle=True, drop_last=True):
|
||||
# Initialize the tokenizer
|
||||
tokenizer = tiktoken.get_encoding("gpt2")
|
||||
@ -78,7 +78,7 @@ class MultiHeadAttention(nn.Module):
|
||||
|
||||
# We implicitly split the matrix by adding a `num_heads` dimension
|
||||
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
|
||||
@ -100,7 +100,7 @@ class MultiHeadAttention(nn.Module):
|
||||
attn_weights = self.dropout(attn_weights)
|
||||
|
||||
# Shape: (b, num_tokens, num_heads, head_dim)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
|
||||
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||||
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
|
||||
@ -132,7 +132,7 @@ class GELU(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
return 0.5 * x * (1 + torch.tanh(
|
||||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||||
(x + 0.044715 * torch.pow(x, 3))
|
||||
))
|
||||
|
||||
@ -158,7 +158,7 @@ class TransformerBlock(nn.Module):
|
||||
d_in=cfg["emb_dim"],
|
||||
d_out=cfg["emb_dim"],
|
||||
block_size=cfg["ctx_len"],
|
||||
num_heads=cfg["n_heads"],
|
||||
num_heads=cfg["n_heads"],
|
||||
dropout=cfg["drop_rate"],
|
||||
qkv_bias=cfg["qkv_bias"])
|
||||
self.ff = FeedForward(cfg)
|
||||
@ -224,7 +224,7 @@ def generate_text_simple(model, idx, max_new_tokens, context_size):
|
||||
|
||||
# Focus only on the last time step
|
||||
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
|
||||
logits = logits[:, -1, :]
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
# Get the idx of the vocab entry with the highest logits value
|
||||
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
|
||||
|
@ -27,7 +27,7 @@ class GPTDatasetV1(Dataset):
|
||||
return self.input_ids[idx], self.target_ids[idx]
|
||||
|
||||
|
||||
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
||||
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
||||
stride=128, shuffle=True, drop_last=True):
|
||||
# Initialize the tokenizer
|
||||
tokenizer = tiktoken.get_encoding("gpt2")
|
||||
@ -49,7 +49,7 @@ class MultiHeadAttention(nn.Module):
|
||||
|
||||
self.d_out = d_out
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
||||
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
||||
|
||||
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
@ -61,13 +61,13 @@ class MultiHeadAttention(nn.Module):
|
||||
def forward(self, x):
|
||||
b, num_tokens, d_in = x.shape
|
||||
|
||||
keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
|
||||
keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
|
||||
queries = self.W_query(x)
|
||||
values = self.W_value(x)
|
||||
|
||||
# We implicitly split the matrix by adding a `num_heads` dimension
|
||||
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
|
||||
@ -84,15 +84,15 @@ class MultiHeadAttention(nn.Module):
|
||||
|
||||
# Use the mask to fill attention scores
|
||||
attn_scores.masked_fill_(mask_bool, -torch.inf)
|
||||
|
||||
|
||||
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
||||
attn_weights = self.dropout(attn_weights)
|
||||
|
||||
# Shape: (b, num_tokens, num_heads, head_dim)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
|
||||
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||||
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
|
||||
context_vec = self.out_proj(context_vec) # optional projection
|
||||
context_vec = self.out_proj(context_vec) # optional projection
|
||||
|
||||
return context_vec
|
||||
return context_vec
|
||||
|
@ -100,7 +100,7 @@ class MultiHeadAttention(nn.Module):
|
||||
attn_weights = self.dropout(attn_weights)
|
||||
|
||||
# Shape: (b, num_tokens, num_heads, head_dim)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
|
||||
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||||
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
|
||||
@ -132,7 +132,7 @@ class GELU(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
return 0.5 * x * (1 + torch.tanh(
|
||||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||||
(x + 0.044715 * torch.pow(x, 3))
|
||||
))
|
||||
|
||||
@ -158,7 +158,7 @@ class TransformerBlock(nn.Module):
|
||||
d_in=cfg["emb_dim"],
|
||||
d_out=cfg["emb_dim"],
|
||||
block_size=cfg["ctx_len"],
|
||||
num_heads=cfg["n_heads"],
|
||||
num_heads=cfg["n_heads"],
|
||||
dropout=cfg["drop_rate"],
|
||||
qkv_bias=cfg["qkv_bias"])
|
||||
self.ff = FeedForward(cfg)
|
||||
@ -224,7 +224,7 @@ def generate_text_simple(model, idx, max_new_tokens, context_size):
|
||||
|
||||
# Focus only on the last time step
|
||||
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
|
||||
logits = logits[:, -1, :]
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
# Get the idx of the vocab entry with the highest logits value
|
||||
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
|
||||
|
@ -159,7 +159,7 @@ if __name__ == "__main__":
|
||||
stride=GPT_CONFIG_124M["ctx_len"],
|
||||
drop_last=False,
|
||||
shuffle=False
|
||||
)
|
||||
)
|
||||
|
||||
model = GPTModel(GPT_CONFIG_124M)
|
||||
model.to(device)
|
||||
@ -199,4 +199,4 @@ if __name__ == "__main__":
|
||||
if not interrupted:
|
||||
print("Hyperparameter search completed.")
|
||||
print(f"Best hyperparameters: {best_hparams}")
|
||||
print(f"Best Val loss: {best_val_loss} | Training loss {train_loss}")
|
||||
print(f"Best Val loss: {best_val_loss} | Training loss {train_loss}")
|
||||
|
@ -35,7 +35,7 @@ class GPTDatasetV1(Dataset):
|
||||
return self.input_ids[idx], self.target_ids[idx]
|
||||
|
||||
|
||||
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
||||
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
||||
stride=128, shuffle=True, drop_last=True):
|
||||
# Initialize the tokenizer
|
||||
tokenizer = tiktoken.get_encoding("gpt2")
|
||||
@ -78,7 +78,7 @@ class MultiHeadAttention(nn.Module):
|
||||
|
||||
# We implicitly split the matrix by adding a `num_heads` dimension
|
||||
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
|
||||
@ -100,7 +100,7 @@ class MultiHeadAttention(nn.Module):
|
||||
attn_weights = self.dropout(attn_weights)
|
||||
|
||||
# Shape: (b, num_tokens, num_heads, head_dim)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
|
||||
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||||
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
|
||||
@ -132,7 +132,7 @@ class GELU(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
return 0.5 * x * (1 + torch.tanh(
|
||||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||||
(x + 0.044715 * torch.pow(x, 3))
|
||||
))
|
||||
|
||||
@ -158,7 +158,7 @@ class TransformerBlock(nn.Module):
|
||||
d_in=cfg["emb_dim"],
|
||||
d_out=cfg["emb_dim"],
|
||||
block_size=cfg["ctx_len"],
|
||||
num_heads=cfg["n_heads"],
|
||||
num_heads=cfg["n_heads"],
|
||||
dropout=cfg["drop_rate"],
|
||||
qkv_bias=cfg["qkv_bias"])
|
||||
self.ff = FeedForward(cfg)
|
||||
@ -224,7 +224,7 @@ def generate_text_simple(model, idx, max_new_tokens, context_size):
|
||||
|
||||
# Focus only on the last time step
|
||||
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
|
||||
logits = logits[:, -1, :]
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
# Get the idx of the vocab entry with the highest logits value
|
||||
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
|
||||
|
@ -63,4 +63,4 @@ if __name__ == "__main__":
|
||||
target_dir = "path_to_your_large_files"
|
||||
print(f"{len(all_files)} files to process.")
|
||||
|
||||
combine_files(all_files, args.output_dir)
|
||||
combine_files(all_files, args.output_dir)
|
||||
|
@ -99,7 +99,7 @@ def train_model_simple(model, optimizer, device, n_epochs,
|
||||
max_length=GPT_CONFIG_124M["ctx_len"],
|
||||
stride=GPT_CONFIG_124M["ctx_len"]
|
||||
)
|
||||
print(f"Training ...")
|
||||
print("Training ...")
|
||||
model.train()
|
||||
for input_batch, target_batch in train_loader:
|
||||
optimizer.zero_grad()
|
||||
|
@ -9,11 +9,11 @@ from torch.utils.data import Dataset, DataLoader
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
#####################################
|
||||
# Chapter 2
|
||||
#####################################
|
||||
|
||||
|
||||
class GPTDatasetV1(Dataset):
|
||||
def __init__(self, txt, tokenizer, max_length, stride):
|
||||
self.tokenizer = tokenizer
|
||||
@ -310,5 +310,3 @@ def text_to_token_ids(text, tokenizer):
|
||||
def token_ids_to_text(token_ids, tokenizer):
|
||||
flat = token_ids.squeeze(0) # remove batch dimension
|
||||
return tokenizer.decode(flat.tolist())
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user