Batched KV Cache Inference for Qwen3 (#735)

This commit is contained in:
Sebastian Raschka 2025-07-10 08:09:35 -05:00 committed by GitHub
parent 7dc1dcbe27
commit a200698698
8 changed files with 506 additions and 6 deletions

View File

@ -292,4 +292,72 @@ Note that the peak memory usage is only listed for Nvidia CUDA devices, as it is
| Qwen3Model | KV cache | Nvidia A100 GPU | 25 | 1.47 GB |
| Qwen3Model | KV cache compiled | Nvidia A100 GPU | 90 | 1.48 GB |
Note that all settings above have been tested to produce the same text outputs.
Note that all settings above have been tested to produce the same text outputs.
 
#### Pro tip 3: batched inference
We can further increase the throughput via batched inference. While it's not an apples-to-apples comparison, as we are now running inference with a higher number of input sequences, this increases the tokens per second throughput while trading it off against increased memory usage.
This only requires a small code modification with respect to preparing the prompt. For example, consider this batched prompt below:
```python
from llms_from_scratch.ch04 import generate_text_simple
from llms_from_scratch.qwen3 import Qwen3Model, QWEN_CONFIG_06_B
# ...
prompts = [
"Give me a short introduction to neural networks.",
"Give me a short introduction to machine learning.",
"Give me a short introduction to deep learning models.",
"Give me a short introduction to natural language processing.",
"Give me a short introduction to generative AI systems.",
"Give me a short introduction to transformer architectures.",
"Give me a short introduction to supervised learning methods.",
"Give me a short introduction to unsupervised learning.",
]
tokenized_prompts = [tokenizer.encode(p) for p in prompts]
max_len = max(len(t) for t in tokenized_prompts)
padded_token_ids = [
t + [tokenizer.pad_token_id] * (max_len - len(t)) for t in tokenized_prompts
]
input_tensor = torch.tensor(padded_token_ids).to(device)
output_token_ids = generate_text_simple(
model=model,
idx=input_tensor,
max_new_tokens=150,
context_size=QWEN_CONFIG_06_B["context_length"],
)
```
The code for the KV cache version is similar, except that it requires using these drop-in replacements:
```python
from llms_from_scratch.kv_cache_batched.generate import generate_text_simple
from llms_from_scratch.kv_cache_batched.qwen3 import Qwen3Model
```
The experiments below are run with a batch size of 8.
| Model | Mode | Hardware | Batch size | Tokens/sec | GPU Memory (VRAM) |
| ---------- | ----------------- | --------------- | ---------- | ---------- | ----------------- |
| Qwen3Model | Regular | Mac Mini M4 CPU | 8 | 2 | - |
| Qwen3Model | Regular compiled | Mac Mini M4 CPU | 8 | - | - |
| Qwen3Model | KV cache | Mac Mini M4 CPU | 8 | 92 | - |
| Qwen3Model | KV cache compiled | Mac Mini M4 CPU | 8 | 128 | - |
| | | | | | |
| Qwen3Model | Regular | Mac Mini M4 GPU | 8 | 36 | - |
| Qwen3Model | Regular compiled | Mac Mini M4 GPU | 8 | - | - |
| Qwen3Model | KV cache | Mac Mini M4 GPU | 8 | 61 | - |
| Qwen3Model | KV cache compiled | Mac Mini M4 GPU | 8 | - | - |
| | | | | | |
| Qwen3Model | Regular | Nvidia A100 GPU | 8 | 184 | 2.19 GB |
| Qwen3Model | Regular compiled | Nvidia A100 GPU | 8 | 351 | 2.19 GB |
| Qwen3Model | KV cache | Nvidia A100 GPU | 8 | 140 | 3.13 GB |
| Qwen3Model | KV cache compiled | Nvidia A100 GPU | 8 | 280 | 1.75 GB |

View File

@ -161,6 +161,10 @@ from llms_from_scratch.qwen3 import (
# KV cache drop-in replacements
from llms_from_scratch.kv_cache.qwen3 import Qwen3Model
from llms_from_scratch.kv_cache.generate import generate_text_simple
# KV cache drop-in replacements with batched inference support
from llms_from_scratch.kv_cache_batched.generate import generate_text_simple
from llms_from_scratch.kv_cache_batched.qwen3 import Qwen3Model
```
For the `llms_from_scratch.qwen3` usage information, please see [this bonus section](../../ch05/11_qwen3/README.md).

View File

@ -0,0 +1,4 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch

View File

@ -0,0 +1,50 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
from .utils import KVCache
import torch
def generate_text_simple(model, idx, max_new_tokens, context_size=None, use_cache=True):
model.eval()
ctx_len = context_size or model.cfg["context_length"]
batch_size = idx.size(0)
with torch.no_grad():
if use_cache:
# initialize cache and positions
cache = KVCache(n_layers=model.cfg["n_layers"], batch_size=batch_size)
model.reset_kv_cache(batch_size=batch_size, device=idx.device)
# initial full-context pass
input_ids = idx[:, -ctx_len:]
seq_len = input_ids.size(1)
start_pos = model.current_pos.clone()
logits = model(
input_ids,
cache=cache,
start_pos=start_pos
)
model.current_pos += seq_len
# iterative generation
for _ in range(max_new_tokens):
next_token = logits[:, -1].argmax(dim=-1, keepdim=True) # (B, 1)
logits = model(
next_token,
cache=cache,
start_pos=model.current_pos.clone()
)
model.current_pos += 1
idx = torch.cat([idx, next_token], dim=1)
else:
# no cache
for _ in range(max_new_tokens):
input_ids = idx[:, -ctx_len:]
logits = model(input_ids, cache=None, start_pos=None)
next_token = logits[:, -1].argmax(dim=-1, keepdim=True)
idx = torch.cat([idx, next_token], dim=1)
return idx

View File

@ -0,0 +1,287 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
from .utils import KVCache # noqa: F401
from ..qwen3 import ( # noqa: F401
QWEN_CONFIG_06_B, QWEN3_CONFIG_1_7B, QWEN3_CONFIG_4B,
QWEN3_CONFIG_8B, QWEN3_CONFIG_14B, QWEN3_CONFIG_32B,
Qwen3Tokenizer, load_weights_into_qwen,
download_from_huggingface,
download_from_huggingface_from_snapshots
)
import torch
import torch.nn as nn
class Qwen3Model(nn.Module):
def __init__(self, cfg):
super().__init__()
# Main model parameters
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin`
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
)
self.final_norm = RMSNorm(cfg["emb_dim"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
# Reusable utilities
if cfg["head_dim"] is None:
head_dim = cfg["emb_dim"] // cfg["n_heads"]
else:
head_dim = cfg["head_dim"]
cos, sin = compute_rope_params(
head_dim=head_dim,
theta_base=cfg["rope_base"],
context_length=cfg["context_length"]
)
self.register_buffer("cos", cos, persistent=False)
self.register_buffer("sin", sin, persistent=False)
self.cfg = cfg
self.current_pos = None # Batched version tracks positions per sample
def forward(self, in_idx, cache=None, start_pos=None):
B, num_tokens = in_idx.size()
tok_embeds = self.tok_emb(in_idx)
x = tok_embeds
device = x.device
if cache is not None:
pos_start = start_pos
pos_end = pos_start + num_tokens
max_len = pos_end.max().item()
full_mask = torch.triu(
torch.ones(max_len, max_len, device=device, dtype=torch.bool), diagonal=1
)
mask = torch.zeros(B, 1, num_tokens, max_len, device=device, dtype=torch.bool)
for i in range(B):
ps, pe = pos_start[i].item(), pos_end[i].item()
mask[i, 0] = full_mask[ps:pe, :pe]
else:
pos_start = torch.zeros(B, dtype=torch.long, device=device)
mask = torch.triu(
torch.ones(num_tokens, num_tokens, device=device, dtype=torch.bool), diagonal=1
)[None, None, :, :]
for i, block in enumerate(self.trf_blocks):
blk_cache = [cache.get(i, b_idx) for b_idx in range(B)] if cache is not None else None
x, new_blk_cache = block(x, mask, self.cos, self.sin, start_pos=pos_start, cache=blk_cache)
if cache is not None:
for b_idx in range(B):
cache.update(i, b_idx, new_blk_cache[b_idx])
x = self.final_norm(x)
logits = self.out_head(x.to(self.cfg["dtype"]))
return logits
def reset_kv_cache(self, batch_size, device=None):
device = device or next(self.parameters()).device
self.current_pos = torch.zeros(batch_size, dtype=torch.long, device=device)
class TransformerBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.att = GroupedQueryAttention(
d_in=cfg["emb_dim"],
num_heads=cfg["n_heads"],
head_dim=cfg["head_dim"],
num_kv_groups=cfg["n_kv_groups"],
qk_norm=cfg["qk_norm"],
dtype=cfg["dtype"]
)
self.ff = FeedForward(cfg)
self.norm1 = RMSNorm(cfg["emb_dim"], eps=1e-6)
self.norm2 = RMSNorm(cfg["emb_dim"], eps=1e-6)
def forward(self, x, mask, cos, sin, start_pos=0, cache=None):
# Shortcut connection for attention block
shortcut = x
x = self.norm1(x)
x, next_cache = self.att(x, mask, cos, sin, start_pos=start_pos, cache=cache) # Shape [batch_size, num_tokens, emb_size]
x = x + shortcut # Add the original input back
# Shortcut connection for feed-forward block
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = x + shortcut # Add the original input back
return x, next_cache
class FeedForward(nn.Module):
def __init__(self, cfg):
super().__init__()
self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)
def forward(self, x):
x_fc1 = self.fc1(x)
x_fc2 = self.fc2(x)
x = nn.functional.silu(x_fc1) * x_fc2
return self.fc3(x)
class GroupedQueryAttention(nn.Module):
def __init__(self, d_in, num_heads, num_kv_groups, head_dim=None, qk_norm=False, dtype=None):
super().__init__()
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
self.num_heads = num_heads
self.num_kv_groups = num_kv_groups
self.group_size = num_heads // num_kv_groups
if head_dim is None:
assert d_in % num_heads == 0, "`d_in` must be divisible by `num_heads` if `head_dim` is not set"
head_dim = d_in // num_heads
self.head_dim = head_dim
self.d_out = num_heads * head_dim
self.W_query = nn.Linear(d_in, self.d_out, bias=False, dtype=dtype)
self.W_key = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype)
self.W_value = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype)
self.out_proj = nn.Linear(self.d_out, d_in, bias=False, dtype=dtype)
if qk_norm:
self.q_norm = RMSNorm(head_dim, eps=1e-6)
self.k_norm = RMSNorm(head_dim, eps=1e-6)
else:
self.q_norm = self.k_norm = None
def forward(self, x, mask, cos, sin, start_pos=0, cache=None):
b, num_tokens, _ = x.shape
# Apply projections
queries = self.W_query(x) # (b, num_tokens, num_heads * head_dim)
keys = self.W_key(x) # (b, num_tokens, num_kv_groups * head_dim)
values = self.W_value(x) # (b, num_tokens, num_kv_groups * head_dim)
# Reshape
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2)
keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2)
# Optional normalization
if self.q_norm:
queries = self.q_norm(queries)
if self.k_norm:
keys = self.k_norm(keys)
# Apply RoPE
queries = apply_rope(queries, cos, sin, offset=start_pos)
keys = apply_rope(keys, cos, sin, offset=start_pos)
# KV caching
next_cache = []
for i in range(b):
prev = cache[i] if cache else None
if prev is None:
k_cat = keys[i:i+1]
v_cat = values[i:i+1]
else:
prev_k, prev_v = prev
k_cat = torch.cat([prev_k, keys[i:i+1]], dim=2)
v_cat = torch.cat([prev_v, values[i:i+1]], dim=2)
next_cache.append((k_cat, v_cat))
keys = torch.cat([k for k, _ in next_cache], dim=0)
values = torch.cat([v for _, v in next_cache], dim=0)
# Expand K and V to match number of heads
keys = keys.repeat_interleave(self.group_size, dim=1)
values = values.repeat_interleave(self.group_size, dim=1)
# Attention
attn_scores = queries @ keys.transpose(2, 3)
attn_scores = attn_scores.masked_fill(mask, -torch.inf)
# attn_weights = torch.softmax(attn_scores / self.head_dim**0.5, dim=-1)
# PyTorch fails to do the implicit casting, so we have to be intentional with the types
scale = torch.tensor(self.head_dim**0.5, dtype=queries.dtype, device=queries.device)
attn_weights = torch.softmax(attn_scores / scale, dim=-1).to(values.dtype)
context = (attn_weights @ values).transpose(1, 2).reshape(b, num_tokens, self.d_out)
return self.out_proj(context), next_cache
def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, dtype=torch.float32):
assert head_dim % 2 == 0, "Embedding dimension must be even"
# Compute the inverse frequencies
inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim))
# Generate position indices
positions = torch.arange(context_length, dtype=dtype)
# Compute the angles
angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2)
# Expand angles to match the head_dim
angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim)
# Precompute sine and cosine
cos = torch.cos(angles)
sin = torch.sin(angles)
return cos, sin
def apply_rope(x, cos, sin, offset):
# x: (batch_size, num_heads, seq_len, head_dim)
bsz, n_heads, seq_len, head_dim = x.shape
assert head_dim % 2 == 0, "Head dimension must be even"
assert offset.shape[0] == bsz, "Offset must have one value per batch item"
# Prepare cos/sin: (seq_len, head_dim)
cos = cos[:cos.shape[0], :].unsqueeze(0).unsqueeze(0) # (1, 1, total_seq_len, head_dim)
sin = sin[:sin.shape[0], :].unsqueeze(0).unsqueeze(0)
# Build position indices per batch item
position_ids = torch.arange(seq_len, device=offset.device).unsqueeze(0) + offset.unsqueeze(1) # (bsz, seq_len)
position_ids = position_ids.clamp(max=cos.shape[2] - 1)
# Gather cos/sin for each position
cos = cos[0, 0, position_ids, :] # (bsz, seq_len, head_dim)
sin = sin[0, 0, position_ids, :]
# Expand for multi-heads
cos = cos.unsqueeze(1) # (bsz, 1, seq_len, head_dim)
sin = sin.unsqueeze(1)
x1 = x[..., :head_dim // 2]
x2 = x[..., head_dim // 2:]
rotated = torch.cat((-x2, x1), dim=-1)
x_rotated = (x * cos) + (rotated * sin)
return x_rotated
class RMSNorm(nn.Module):
def __init__(self, emb_dim, eps=1e-6, bias=False, qwen3_compatible=True):
super().__init__()
self.eps = eps
self.qwen3_compatible = qwen3_compatible
self.scale = nn.Parameter(torch.ones(emb_dim))
self.shift = nn.Parameter(torch.zeros(emb_dim)) if bias else None
def forward(self, x):
input_dtype = x.dtype
if self.qwen3_compatible:
x = x.to(torch.float32)
variance = x.pow(2).mean(dim=-1, keepdim=True)
norm_x = x * torch.rsqrt(variance + self.eps)
norm_x = norm_x * self.scale
if self.shift is not None:
norm_x = norm_x + self.shift
return norm_x.to(input_dtype)

View File

@ -0,0 +1,24 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
class KVCache:
def __init__(self, n_layers, batch_size):
self.cache = [
[None for _ in range(batch_size)] for _ in range(n_layers)
]
def get(self, layer_idx, batch_idx):
return self.cache[layer_idx][batch_idx]
def update(self, layer_idx, batch_idx, value):
self.cache[layer_idx][batch_idx] = value
def get_layer(self, layer_idx):
return self.cache[layer_idx]
def reset(self):
for layer in self.cache:
for i in range(len(layer)):
layer[i] = None

View File

@ -15,8 +15,8 @@ from llms_from_scratch.qwen3 import (
from llms_from_scratch.kv_cache.qwen3 import Qwen3Model as Qwen3ModelKV
from llms_from_scratch.kv_cache.generate import generate_text_simple as generate_text_simple_cached
# from llms_from_scratch.kv_cache_batched.qwen3 import Qwen3Model as Qwen3ModelKVBatched
# from llms_from_scratch.kv_cache_batched.generate import generate_text_simple as generate_text_simple_batched
from llms_from_scratch.kv_cache_batched.qwen3 import Qwen3Model as Qwen3ModelKVBatched
from llms_from_scratch.kv_cache_batched.generate import generate_text_simple as generate_text_simple_batched
import importlib
import pytest
@ -172,7 +172,7 @@ def test_model_KV_noKV(qwen3_weights_path):
input_token_ids = tokenizer.encode(prompt)
input_token_ids = torch.tensor([input_token_ids])
out_noKV = generate_text_simple_cached(
out_KV = generate_text_simple_cached(
model=model_KV,
idx=input_token_ids,
max_new_tokens=5,
@ -185,7 +185,7 @@ def test_model_KV_noKV(qwen3_weights_path):
model_noKV.load_state_dict(torch.load(qwen3_weights_path))
model_noKV.eval()
out_KV = generate_text_simple(
out_noKV = generate_text_simple(
model=model_noKV,
idx=input_token_ids,
max_new_tokens=5,
@ -195,6 +195,69 @@ def test_model_KV_noKV(qwen3_weights_path):
assert torch.equal(out_noKV, out_KV)
def test_model_batched_KV(qwen3_weights_path):
torch.manual_seed(123)
model_KV = Qwen3ModelKV(QWEN_CONFIG_06_B)
model_KV.load_state_dict(torch.load(qwen3_weights_path))
model_KV.eval()
tokenizer = Qwen3Tokenizer(
tokenizer_file_path="tokenizer-base.json",
repo_id="rasbt/qwen3-from-scratch",
add_generation_prompt=False,
add_thinking=False
)
# Batch size 1
prompt = "Give me a short introduction to large language models."
input_token_ids = tokenizer.encode(prompt)
input_token_ids = torch.tensor([input_token_ids])
out_KV = generate_text_simple_cached(
model=model_KV,
idx=input_token_ids,
max_new_tokens=5,
context_size=QWEN_CONFIG_06_B["context_length"]
)
del model_KV
torch.manual_seed(123)
model_KV_batched = Qwen3ModelKVBatched(QWEN_CONFIG_06_B)
model_KV_batched.load_state_dict(torch.load(qwen3_weights_path))
model_KV_batched.eval()
out_KV_bs_1 = generate_text_simple_batched(
model=model_KV_batched,
idx=input_token_ids,
max_new_tokens=5,
context_size=QWEN_CONFIG_06_B["context_length"]
)
assert torch.equal(out_KV, out_KV_bs_1)
# Batch size 2
prompts = [
"Give me a short introduction to large language models.",
"Give me a short introduction to large language models."
]
tokenized_prompts = [tokenizer.encode(p) for p in prompts]
max_len = max(len(t) for t in tokenized_prompts)
padded_token_ids = [
t + [tokenizer.pad_token_id] * (max_len - len(t)) for t in tokenized_prompts
]
input_tensor = torch.tensor(padded_token_ids)
out_KV_bs_2 = generate_text_simple_batched(
model=model_KV_batched,
idx=input_tensor,
max_new_tokens=5,
context_size=QWEN_CONFIG_06_B["context_length"],
)
assert torch.equal(out_KV.squeeze(0), out_KV_bs_2[0]), (out_KV.squeeze(0).shape, out_KV_bs_2[0].shape)
def test_rmsnorm_equivalence():
torch.manual_seed(42)

View File

@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "llms-from-scratch"
version = "1.0.16"
version = "1.0.17"
description = "Implement a ChatGPT-like LLM in PyTorch from scratch, step by step"
readme = "README.md"
requires-python = ">=3.10"