11
									
								
								README.md
									
									
									
									
									
								
							
							
						
						@ -1,2 +1,13 @@
 | 
			
		||||
# Large Language Models from Scratch
 | 
			
		||||
 | 
			
		||||
Details will follow ...
 | 
			
		||||
 | 
			
		||||
## Table of Contents
 | 
			
		||||
 | 
			
		||||
| Chapter                                   | Main code                                                    | Code + supplementary         |
 | 
			
		||||
| ----------------------------------------- | ------------------------------------------------------------ | ---------------------------- |
 | 
			
		||||
| Ch 1: Understanding Large Language Models | No code                                                      | No code                      |
 | 
			
		||||
| Ch 2: Working with Text Data              | [ch02.ipynb](ch02/01_main-chapter-code/ch02.ipynb)<br />[dataloader.ipynb](ch02/01_main-chapter-code/dataloader.ipynb) | [./ch02](./ch02)             |
 | 
			
		||||
| Ch 3: Understanding Attention Mechanisms  | [ch03.ipynb](ch03/01_main-chapter-code/ch03.ipynb)<br />[multihead-attention.ipynb](ch03/01_main-chapter-code/multihead-attention.ipynb) | [./ch03](./ch03)             |
 | 
			
		||||
| ...                                       | ...                                                          | ...                          |
 | 
			
		||||
| Appendix A: Introduction to PyTorch       | [code-part1.ipynb](03_main-chapter-code/01_main-chapter-code/code-part1.ipynb)<br />[code-part2.ipynb](03_main-chapter-code/01_main-chapter-code/code-part2.ipynb)<br />[DDP-script.py](03_main-chapter-code/01_main-chapter-code/DDP-script.py) | [./appendix-A](./appendix-A) |
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								appendix-A/.DS_Store
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								ch02/.DS_Store
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								ch02/03_bonus_embedding-vs-matmul/.DS_Store
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								ch03/.DS_Store
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/.DS_Store
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										5
									
								
								ch03/01_main-chapter-code/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						@ -0,0 +1,5 @@
 | 
			
		||||
# Chapter 3: Understanding Attention Mechanisms
 | 
			
		||||
 | 
			
		||||
- [ch03.ipynb](ch03.ipynb) has all the code as it appears in the chapter
 | 
			
		||||
- [multihead-attention.ipynb](multihead-attention.ipynb) is a minimal notebook with the main data loading pipeline implemented in this chapter
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										1768
									
								
								ch03/01_main-chapter-code/ch03.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/figures/attention-matrix.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 136 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/figures/attention.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 67 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/figures/dot-product.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 93 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/figures/dropout.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 193 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/figures/masked.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 124 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/figures/multi-head.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 60 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/figures/single-head.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 71 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/figures/weight-selfattn-1.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 52 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/figures/weight-selfattn-2.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 61 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/figures/weight-selfattn-3.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 53 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch03/01_main-chapter-code/figures/weight-selfattn-4.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 54 KiB  | 
							
								
								
									
										40000
									
								
								ch03/01_main-chapter-code/input.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										332
									
								
								ch03/01_main-chapter-code/multihead-attention.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						@ -0,0 +1,332 @@
 | 
			
		||||
{
 | 
			
		||||
 "cells": [
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "markdown",
 | 
			
		||||
   "id": "6f678e62-7bcb-4405-86ae-dce94f494303",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "source": [
 | 
			
		||||
    "# Multi-head Attention Plus Data Loading"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "markdown",
 | 
			
		||||
   "id": "070000fc-a7b7-4c56-a2c0-a938d413a790",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "source": [
 | 
			
		||||
    "The complete chapter code is located in [ch03.ipynb](./ch03.ipynb).\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "This notebook contains the main takeaway, multihead-attention implementation (plus the data loading pipeline from chapter 2)"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "markdown",
 | 
			
		||||
   "id": "3f60dc93-281d-447e-941f-aede0c7ff7fc",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "source": [
 | 
			
		||||
    "## Data Loader from Chapter 2"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 24,
 | 
			
		||||
   "id": "0ed4b7db-3b47-4fd3-a4a6-5f4ed5dd166e",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "outputs": [],
 | 
			
		||||
   "source": [
 | 
			
		||||
    "import tiktoken\n",
 | 
			
		||||
    "import torch\n",
 | 
			
		||||
    "from torch.utils.data import Dataset, DataLoader\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "class GPTDatasetV1(Dataset):\n",
 | 
			
		||||
    "    def __init__(self, txt, tokenizer, max_length, stride):\n",
 | 
			
		||||
    "        self.tokenizer = tokenizer\n",
 | 
			
		||||
    "        self.input_ids = []\n",
 | 
			
		||||
    "        self.target_ids = []\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "        # Tokenize the entire text\n",
 | 
			
		||||
    "        token_ids = tokenizer.encode(txt)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "        # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
 | 
			
		||||
    "        for i in range(0, len(token_ids) - max_length, stride):\n",
 | 
			
		||||
    "            input_chunk = token_ids[i:i + max_length]\n",
 | 
			
		||||
    "            target_chunk = token_ids[i + 1: i + max_length + 1]\n",
 | 
			
		||||
    "            self.input_ids.append(torch.tensor(input_chunk))\n",
 | 
			
		||||
    "            self.target_ids.append(torch.tensor(target_chunk))\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    def __len__(self):\n",
 | 
			
		||||
    "        return len(self.input_ids)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    def __getitem__(self, idx):\n",
 | 
			
		||||
    "        return self.input_ids[idx], self.target_ids[idx]\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "def create_dataloader(txt, batch_size=4, max_length=256, stride=128):\n",
 | 
			
		||||
    "    # Initialize the tokenizer\n",
 | 
			
		||||
    "    tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    # Create dataset\n",
 | 
			
		||||
    "    dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    # Create dataloader\n",
 | 
			
		||||
    "    dataloader = DataLoader(dataset, batch_size=batch_size)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    return dataloader\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "with open(\"small-text-sample.txt\", \"r\", encoding=\"utf-8\") as f:\n",
 | 
			
		||||
    "    raw_text = f.read()\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
 | 
			
		||||
    "encoded_text = tokenizer.encode(raw_text)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "vocab_size = 50257\n",
 | 
			
		||||
    "output_dim = 256\n",
 | 
			
		||||
    "token_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)\n",
 | 
			
		||||
    "pos_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "max_length = 4\n",
 | 
			
		||||
    "dataloader = create_dataloader(raw_text, batch_size=8, max_length=max_length, stride=5)"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 25,
 | 
			
		||||
   "id": "664397bc-6daa-4b88-90aa-e8fc1fbd5846",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "outputs": [],
 | 
			
		||||
   "source": [
 | 
			
		||||
    "for batch in dataloader:\n",
 | 
			
		||||
    "    x, y = batch\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    token_embeddings = token_embedding_layer(x)\n",
 | 
			
		||||
    "    pos_embeddings = pos_embedding_layer(torch.arange(max_length))\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    input_embeddings = token_embeddings + pos_embeddings\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    break"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 26,
 | 
			
		||||
   "id": "d3664332-e6bb-447e-8b96-203aafde8b24",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "outputs": [
 | 
			
		||||
    {
 | 
			
		||||
     "name": "stdout",
 | 
			
		||||
     "output_type": "stream",
 | 
			
		||||
     "text": [
 | 
			
		||||
      "torch.Size([8, 4, 256])\n"
 | 
			
		||||
     ]
 | 
			
		||||
    }
 | 
			
		||||
   ],
 | 
			
		||||
   "source": [
 | 
			
		||||
    "print(input_embeddings.shape)"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "markdown",
 | 
			
		||||
   "id": "bd298bf4-e320-40c1-9084-6526d07e6d5d",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "source": [
 | 
			
		||||
    "# Multi-head Attention from Chapter 3"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "markdown",
 | 
			
		||||
   "id": "58b2297b-a001-49fd-994c-b1700866cd01",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "source": [
 | 
			
		||||
    "## Variant A: Simple implementation"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 27,
 | 
			
		||||
   "id": "a44e682d-1c3c-445d-85fa-b142f89f8503",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "outputs": [],
 | 
			
		||||
   "source": [
 | 
			
		||||
    "import torch\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "class CausalSelfAttention(torch.nn.Module):\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    def __init__(self, d_in, d_out, block_size, dropout):\n",
 | 
			
		||||
    "        super().__init__()\n",
 | 
			
		||||
    "        self.d_out = d_out\n",
 | 
			
		||||
    "        self.W_query = torch.nn.Linear(d_in, d_out, bias=False)\n",
 | 
			
		||||
    "        self.W_key   = torch.nn.Linear(d_in, d_out, bias=False)\n",
 | 
			
		||||
    "        self.W_value = torch.nn.Linear(d_in, d_out, bias=False)\n",
 | 
			
		||||
    "        self.dropout = torch.nn.Dropout(dropout) # New\n",
 | 
			
		||||
    "        self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1)) # New\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    def forward(self, x):\n",
 | 
			
		||||
    "        b, n_tokens, d_in = x.shape # New batch dimension b\n",
 | 
			
		||||
    "        keys = self.W_key(x)\n",
 | 
			
		||||
    "        queries = self.W_query(x)\n",
 | 
			
		||||
    "        values = self.W_value(x)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "        attn_scores = queries @ keys.transpose(1, 2) # Changed transpose\n",
 | 
			
		||||
    "        attn_scores.masked_fill_(  # New, _ ops are in-place\n",
 | 
			
		||||
    "            self.mask.bool()[:n_tokens, :n_tokens], -torch.inf) \n",
 | 
			
		||||
    "        attn_weights = torch.softmax(attn_scores / self.d_out**0.5, dim=1)\n",
 | 
			
		||||
    "        attn_weights = self.dropout(attn_weights) # New\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "        context_vec = attn_weights @ values\n",
 | 
			
		||||
    "        return context_vec\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "class MultiHeadAttentionWrapper(torch.nn.Module):\n",
 | 
			
		||||
    "    def __init__(self, d_in, d_out, block_size, dropout, num_heads):\n",
 | 
			
		||||
    "        super().__init__()\n",
 | 
			
		||||
    "        self.heads = torch.nn.ModuleList(\n",
 | 
			
		||||
    "            [CausalSelfAttention(d_in, d_out, block_size, dropout) \n",
 | 
			
		||||
    "             for _ in range(num_heads)]\n",
 | 
			
		||||
    "        )\n",
 | 
			
		||||
    "        self.out_proj = torch.nn.Linear(d_out*num_heads, d_out*num_heads)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    def forward(self, x):\n",
 | 
			
		||||
    "        context_vec = torch.cat([head(x) for head in self.heads], dim=-1)\n",
 | 
			
		||||
    "        return self.out_proj(context_vec)"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 28,
 | 
			
		||||
   "id": "7898551e-f582-48ac-9f66-3632abe2a93f",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "outputs": [
 | 
			
		||||
    {
 | 
			
		||||
     "name": "stdout",
 | 
			
		||||
     "output_type": "stream",
 | 
			
		||||
     "text": [
 | 
			
		||||
      "context_vecs.shape: torch.Size([8, 4, 256])\n"
 | 
			
		||||
     ]
 | 
			
		||||
    }
 | 
			
		||||
   ],
 | 
			
		||||
   "source": [
 | 
			
		||||
    "torch.manual_seed(123)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "block_size = max_length\n",
 | 
			
		||||
    "d_in = output_dim\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "num_heads=2\n",
 | 
			
		||||
    "d_out = d_in // num_heads\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "mha = MultiHeadAttentionWrapper(d_in, d_out, block_size, 0.0, num_heads)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "batch = input_embeddings\n",
 | 
			
		||||
    "context_vecs = mha(batch)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "print(\"context_vecs.shape:\", context_vecs.shape)"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "markdown",
 | 
			
		||||
   "id": "1e288239-5146-424d-97fe-74024ae711b9",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "source": [
 | 
			
		||||
    "## Variant B: Alternative implementation"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 34,
 | 
			
		||||
   "id": "2773c09d-c136-4372-a2be-04b58d292842",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "outputs": [],
 | 
			
		||||
   "source": [
 | 
			
		||||
    "import torch\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "class MultiHeadAttention(torch.nn.Module):\n",
 | 
			
		||||
    "    def __init__(self, d_in, d_out, block_size, dropout, num_heads):\n",
 | 
			
		||||
    "        super().__init__()\n",
 | 
			
		||||
    "        assert d_out % num_heads == 0, \"d_out must be divisible by n_heads\"\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "        self.d_out = d_out\n",
 | 
			
		||||
    "        self.num_heads = num_heads\n",
 | 
			
		||||
    "        self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "        self.W_query = torch.nn.Linear(d_in, d_out, bias=False)\n",
 | 
			
		||||
    "        self.W_key = torch.nn.Linear(d_in, d_out, bias=False)\n",
 | 
			
		||||
    "        self.W_value = torch.nn.Linear(d_in, d_out, bias=False)\n",
 | 
			
		||||
    "        self.out_proj = torch.nn.Linear(d_out, d_out)  # Linear layer to combine head outputs\n",
 | 
			
		||||
    "        self.dropout = torch.nn.Dropout(dropout)\n",
 | 
			
		||||
    "        self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1))\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "    def forward(self, x):\n",
 | 
			
		||||
    "        b, n_tokens, d_in = x.shape\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "        # Split into multiple heads\n",
 | 
			
		||||
    "        keys = self.W_key(x).view(b, n_tokens, self.num_heads, self.head_dim).transpose(1, 2)\n",
 | 
			
		||||
    "        queries = self.W_query(x).view(b, n_tokens, self.num_heads, self.head_dim).transpose(1, 2)\n",
 | 
			
		||||
    "        values = self.W_value(x).view(b, n_tokens, self.num_heads, self.head_dim).transpose(1, 2)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "        # Compute scaled dot-product attention for each head\n",
 | 
			
		||||
    "        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head\n",
 | 
			
		||||
    "        attn_scores.masked_fill_(self.mask.bool()[:n_tokens, :n_tokens].unsqueeze(0).unsqueeze(0), -torch.inf)\n",
 | 
			
		||||
    "        attn_weights = torch.softmax(attn_scores / self.head_dim**0.5, dim=-1)\n",
 | 
			
		||||
    "        attn_weights = self.dropout(attn_weights)\n",
 | 
			
		||||
    "        context_vec = (attn_weights @ values).transpose(1, 2) # Shape: (b, T, n_heads, head_dim)\n",
 | 
			
		||||
    "        \n",
 | 
			
		||||
    "        # Combine heads, where self.d_out = self.num_heads * self.head_dim\n",
 | 
			
		||||
    "        context_vec = context_vec.contiguous().view(b, n_tokens, self.d_out)\n",
 | 
			
		||||
    "        context_vec = self.out_proj(context_vec) # optional projection\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "        return context_vec"
 | 
			
		||||
   ]
 | 
			
		||||
  },
 | 
			
		||||
  {
 | 
			
		||||
   "cell_type": "code",
 | 
			
		||||
   "execution_count": 35,
 | 
			
		||||
   "id": "779fdd04-0152-4308-af08-840800a7f395",
 | 
			
		||||
   "metadata": {},
 | 
			
		||||
   "outputs": [
 | 
			
		||||
    {
 | 
			
		||||
     "name": "stdout",
 | 
			
		||||
     "output_type": "stream",
 | 
			
		||||
     "text": [
 | 
			
		||||
      "context_vecs.shape: torch.Size([8, 4, 256])\n"
 | 
			
		||||
     ]
 | 
			
		||||
    }
 | 
			
		||||
   ],
 | 
			
		||||
   "source": [
 | 
			
		||||
    "torch.manual_seed(123)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "block_size = max_length\n",
 | 
			
		||||
    "d_in = output_dim\n",
 | 
			
		||||
    "d_out = d_in\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "mha = MultiHeadAttention(d_in, d_out, block_size, 0.0, num_heads=2)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "batch = input_embeddings\n",
 | 
			
		||||
    "context_vecs = mha(batch)\n",
 | 
			
		||||
    "\n",
 | 
			
		||||
    "print(\"context_vecs.shape:\", context_vecs.shape)"
 | 
			
		||||
   ]
 | 
			
		||||
  }
 | 
			
		||||
 ],
 | 
			
		||||
 "metadata": {
 | 
			
		||||
  "kernelspec": {
 | 
			
		||||
   "display_name": "Python 3 (ipykernel)",
 | 
			
		||||
   "language": "python",
 | 
			
		||||
   "name": "python3"
 | 
			
		||||
  },
 | 
			
		||||
  "language_info": {
 | 
			
		||||
   "codemirror_mode": {
 | 
			
		||||
    "name": "ipython",
 | 
			
		||||
    "version": 3
 | 
			
		||||
   },
 | 
			
		||||
   "file_extension": ".py",
 | 
			
		||||
   "mimetype": "text/x-python",
 | 
			
		||||
   "name": "python",
 | 
			
		||||
   "nbconvert_exporter": "python",
 | 
			
		||||
   "pygments_lexer": "ipython3",
 | 
			
		||||
   "version": "3.10.12"
 | 
			
		||||
  }
 | 
			
		||||
 },
 | 
			
		||||
 "nbformat": 4,
 | 
			
		||||
 "nbformat_minor": 5
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										3
									
								
								ch03/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						@ -0,0 +1,3 @@
 | 
			
		||||
# Chapter 3: Understanding Attention Mechanisms
 | 
			
		||||
 | 
			
		||||
- [01_main-chapter-code](01_main-chapter-code) contains the main chapter code.
 | 
			
		||||