mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-11-02 19:00:14 +00:00
Native uv docs (#530)
* Replace pip by more modern uv * uv tests * Native uv docs * resolve merge conflicts * resolve merge conflicts
This commit is contained in:
parent
fac61004b0
commit
aa60bb3cd5
2
.gitignore
vendored
2
.gitignore
vendored
@ -244,6 +244,8 @@ celerybeat.pid
|
|||||||
# Environments
|
# Environments
|
||||||
.env
|
.env
|
||||||
.venv
|
.venv
|
||||||
|
.python-version
|
||||||
|
uv.lock
|
||||||
env/
|
env/
|
||||||
venv/
|
venv/
|
||||||
ENV/
|
ENV/
|
||||||
|
|||||||
29
pyproject.toml
Normal file
29
pyproject.toml
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
[project]
|
||||||
|
name = "llms-from-scratch"
|
||||||
|
version = "0.1.0"
|
||||||
|
description = "mplement a ChatGPT-like LLM in PyTorch from scratch, step by step"
|
||||||
|
readme = "README.md"
|
||||||
|
requires-python = ">=3.10"
|
||||||
|
dependencies = [
|
||||||
|
"torch>=2.3.0",
|
||||||
|
"jupyterlab>=4.0",
|
||||||
|
"tiktoken>=0.5.1",
|
||||||
|
"matplotlib>=3.7.1",
|
||||||
|
"tensorflow>=2.18.0",
|
||||||
|
"tqdm>=4.66.1",
|
||||||
|
"numpy>=1.26,<2.1",
|
||||||
|
"pandas>=2.2.1",
|
||||||
|
"psutil>=5.9.5",
|
||||||
|
"packaging>=24.2",
|
||||||
|
]
|
||||||
|
|
||||||
|
[tool.setuptools.packages]
|
||||||
|
find = {}
|
||||||
|
|
||||||
|
[tool.uv.sources]
|
||||||
|
llms-from-scratch = { workspace = true }
|
||||||
|
|
||||||
|
[dependency-groups]
|
||||||
|
dev = [
|
||||||
|
"llms-from-scratch",
|
||||||
|
]
|
||||||
@ -8,20 +8,29 @@ I have been a long-time user of [Conda](https://anaconda.org/anaconda/conda) and
|
|||||||
|
|
||||||
I recommend starting with *Option 1: Using uv* as it is the more modern approach in 2025. If you encounter problems with *Option 1*, consider *Option 2: Using Conda*.
|
I recommend starting with *Option 1: Using uv* as it is the more modern approach in 2025. If you encounter problems with *Option 1*, consider *Option 2: Using Conda*.
|
||||||
|
|
||||||
|
In this tutorial, I am using a computer running macOS, but this workflow is similar for Linux machines and may work for other operating systems as well.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Option 1: Using uv
|
# Option 1: Using uv
|
||||||
|
|
||||||
|
This section guides you through the Python setup and package installation procedure using `uv` via its `uv pip` interface. The `uv pip` interface may feel more familiar to most Python users who have used pip before than the native `uv` commands.
|
||||||
|
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
This section guides you through the Python setup and package installation procedure using `uv`.
|
> There are alternative ways to install Python and use `uv`. For example, you can install Python directly via `uv` and use `uv add` instead of `uv pip install` for faster package management.
|
||||||
|
>
|
||||||
In this tutorial, I am using a computer running macOS, but this workflow is similar for Linux machines and may work for other operating systems as well.
|
> If you prefer the native `uv` commands, refer to the [./native-uv.md tutorial](./native-uv.md). I also recommend checking the official [`uv` documentation](https://docs.astral.sh/uv/).
|
||||||
|
>
|
||||||
|
> While `uv add` offers speed advantages, I find `uv pip` slightly more user-friendly, making it a good starting point for beginners. However, if you're new to Python package management, the native `uv` interface is also a great way to learn.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## 1. Install Python (if not installed)
|
## 1. Install Python (if not installed)
|
||||||
|
|
||||||
|
|
||||||
First, check if you have a modern version of Python installed (I recommend 3.10 or newer) by executing the following code in the terminal:
|
First, check if you have a modern version of Python installed (I recommend 3.10 or newer) by executing the following code in the terminal:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
@ -29,6 +38,7 @@ python --version
|
|||||||
```
|
```
|
||||||
If it returns 3.10 or newer, no further action is required.
|
If it returns 3.10 or newer, no further action is required.
|
||||||
|
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> I recommend installing a Python version that is at least 2 versions older than the most recent release to ensure PyTorch compatibility. For example, if the most recent version is Python 3.13, I recommend installing version 3.10 or 3.11.
|
> I recommend installing a Python version that is at least 2 versions older than the most recent release to ensure PyTorch compatibility. For example, if the most recent version is Python 3.13, I recommend installing version 3.10 or 3.11.
|
||||||
|
|
||||||
|
|||||||
170
setup/01_optional-python-setup-preferences/native-uv.md
Normal file
170
setup/01_optional-python-setup-preferences/native-uv.md
Normal file
@ -0,0 +1,170 @@
|
|||||||
|
# Native uv Python and package management
|
||||||
|
|
||||||
|
This tutorial is an alternative to *Option 1: Using uv* in the [README.md](./README.md) document for those who prefer `uv`'s native commands over the `uv pip` interface. While `uv pip` is faster than pure `pip`, `uv`'s native interface is even faster than `uv pip` as it has less overhead and doesn't have to handle legacy support for PyPy package dependency management.
|
||||||
|
|
||||||
|
Otherwise, similar to *Option 1: Using uv* in the [README.md](./README.md) , this section guides you through the Python setup and package installation procedure using `uv`.
|
||||||
|
|
||||||
|
In this tutorial, I am using a computer running macOS, but this workflow is similar for Linux machines and may work for other operating systems as well.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## 1. Install uv
|
||||||
|
|
||||||
|
Uv can be installed as follows, depending on your operating system.
|
||||||
|
|
||||||
|
|
||||||
|
**macOS and Linux**
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||||
|
```
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
```bash
|
||||||
|
wget -qO- https://astral.sh/uv/install.sh | sh
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
**Windows**
|
||||||
|
|
||||||
|
```bash
|
||||||
|
powershell -c "irm https://astral.sh/uv/install.ps1 | more"
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> For more installation options, please refer to the official [uv documentation](https://docs.astral.sh/uv/getting-started/installation/#standalone-installer).
|
||||||
|
|
||||||
|
|
||||||
|
## 2. Install Python
|
||||||
|
|
||||||
|
You can install Python using uv:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv python install 3.10
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> I recommend installing a Python version that is at least 2 versions older than the most recent release to ensure PyTorch compatibility. For example, if the most recent version is Python 3.13, I recommend installing version 3.10 or 3.11. You can find out the most recent Python version by visiting [python.org](https://www.python.org/downloads/).
|
||||||
|
|
||||||
|
|
||||||
|
## 3. Install Python packages and dependencies
|
||||||
|
|
||||||
|
To install all required packages from a `pyproject.toml` file (such as the one located at the top level of this GitHub repository), run the following command, assuming the file is in the same directory as your terminal session:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv add . --dev
|
||||||
|
```
|
||||||
|
|
||||||
|
<img src="https://sebastianraschka.com/images/LLMs-from-scratch-images/setup/uv-setup/uv-add.png?1" width="700" height="auto" alt="Uv install">
|
||||||
|
|
||||||
|
Note that the `uv add` command above will create a separate virtual environment via the `.venv` subfolder.
|
||||||
|
|
||||||
|
You can install new packages, that are not specified in the `pyproject.toml` via `uv add`, for example:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv add packaging
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Optional: Manage virtual environments manually
|
||||||
|
|
||||||
|
Alternatively, you can still install the dependencies directly from the repository using `uv pip install`. Note that this requires creating and activating the virtual environment manually:
|
||||||
|
|
||||||
|
|
||||||
|
**1. Create a new virtual environment**
|
||||||
|
|
||||||
|
Run the following command to manually create a new virtual environment, which will be saved via a new `.venv` subfolder:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv venv --python=python3.10
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
**2. Activate virtual environment**
|
||||||
|
|
||||||
|
Next, we need to activate this new virtual environment.
|
||||||
|
|
||||||
|
On macOS/Linux:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
source .venv/bin/activate
|
||||||
|
```
|
||||||
|
|
||||||
|
On Windows (PowerShell):
|
||||||
|
|
||||||
|
```bash
|
||||||
|
.venv\Scripts\activate
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
**3. Install dependencies**
|
||||||
|
|
||||||
|
Finally, we can install dependencies from a remote location using the `uv pip` interface:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv pip install -U -r https://raw.githubusercontent.com/rasbt/LLMs-from-scratch/refs/heads/main/requirements.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## 4. Run Python code
|
||||||
|
|
||||||
|
|
||||||
|
**Finalizing the setup**
|
||||||
|
|
||||||
|
Your environment should now be ready to run the code in the repository.
|
||||||
|
|
||||||
|
Optionally, you can run an environment check by executing the `python_environment_check.py` script in this repository:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv run python setup/02_installing-python-libraries/python_environment_check.py
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
<img src="https://sebastianraschka.com/images/LLMs-from-scratch-images/setup/uv-setup/uv-run-check.png?1" width="700" height="auto" alt="Uv install">
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Or, if you don't want to type `uv run python` ever time you execute code, manually activate the virtual environment first.
|
||||||
|
|
||||||
|
On macOS/Linux:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
source .venv/bin/activate
|
||||||
|
```
|
||||||
|
|
||||||
|
On Windows (PowerShell):
|
||||||
|
|
||||||
|
```bash
|
||||||
|
.venv\Scripts\activate
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, run:
|
||||||
|
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python setup/02_installing-python-libraries/python_environment_check.py
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
**Launching JupyterLab**
|
||||||
|
|
||||||
|
You can launch a JupyterLab instance via:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
uv run jupyter lab
|
||||||
|
```
|
||||||
|
|
||||||
|
Or, if you manually activated the environment as described earlier, you can drop the `uv run` prefix.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
Any questions? Please feel free to reach out in the [Discussion Forum](https://github.com/rasbt/LLMs-from-scratch/discussions).
|
||||||
Loading…
x
Reference in New Issue
Block a user