mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 18:00:08 +00:00 
			
		
		
		
	Merge branch 'main' into main
This commit is contained in:
		
						commit
						abd29ce7c2
					
				
							
								
								
									
										99
									
								
								ch06/03_bonus_imdb-classification/gpt_download.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								ch06/03_bonus_imdb-classification/gpt_download.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,99 @@ | ||||
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | ||||
| # Source for "Build a Large Language Model From Scratch" | ||||
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | ||||
| # Code: https://github.com/rasbt/LLMs-from-scratch | ||||
| 
 | ||||
| 
 | ||||
| import os | ||||
| import requests | ||||
| import json | ||||
| import numpy as np | ||||
| import tensorflow as tf | ||||
| from tqdm import tqdm | ||||
| 
 | ||||
| 
 | ||||
| def download_and_load_gpt2(model_size, models_dir): | ||||
|     # Validate model size | ||||
|     allowed_sizes = ("124M", "355M", "774M", "1558M") | ||||
|     if model_size not in allowed_sizes: | ||||
|         raise ValueError(f"Model size not in {allowed_sizes}") | ||||
| 
 | ||||
|     # Define paths | ||||
|     model_dir = os.path.join(models_dir, model_size) | ||||
|     base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" | ||||
|     filenames = [ | ||||
|         "checkpoint", "encoder.json", "hparams.json", | ||||
|         "model.ckpt.data-00000-of-00001", "model.ckpt.index", | ||||
|         "model.ckpt.meta", "vocab.bpe" | ||||
|     ] | ||||
| 
 | ||||
|     # Download files | ||||
|     os.makedirs(model_dir, exist_ok=True) | ||||
|     for filename in filenames: | ||||
|         file_url = os.path.join(base_url, model_size, filename) | ||||
|         file_path = os.path.join(model_dir, filename) | ||||
|         download_file(file_url, file_path) | ||||
| 
 | ||||
|     # Load settings and params | ||||
|     tf_ckpt_path = tf.train.latest_checkpoint(model_dir) | ||||
|     settings = json.load(open(os.path.join(model_dir, "hparams.json"))) | ||||
|     params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) | ||||
| 
 | ||||
|     return settings, params | ||||
| 
 | ||||
| 
 | ||||
| def download_file(url, destination): | ||||
|     # Send a GET request to download the file in streaming mode | ||||
|     response = requests.get(url, stream=True) | ||||
| 
 | ||||
|     # Get the total file size from headers, defaulting to 0 if not present | ||||
|     file_size = int(response.headers.get("content-length", 0)) | ||||
| 
 | ||||
|     # Check if file exists and has the same size | ||||
|     if os.path.exists(destination): | ||||
|         file_size_local = os.path.getsize(destination) | ||||
|         if file_size == file_size_local: | ||||
|             print(f"File already exists and is up-to-date: {destination}") | ||||
|             return | ||||
| 
 | ||||
|     # Define the block size for reading the file | ||||
|     block_size = 1024  # 1 Kilobyte | ||||
| 
 | ||||
|     # Initialize the progress bar with total file size | ||||
|     progress_bar_description = url.split("/")[-1]  # Extract filename from URL | ||||
|     with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: | ||||
|         # Open the destination file in binary write mode | ||||
|         with open(destination, "wb") as file: | ||||
|             # Iterate over the file data in chunks | ||||
|             for chunk in response.iter_content(block_size): | ||||
|                 progress_bar.update(len(chunk))  # Update progress bar | ||||
|                 file.write(chunk)  # Write the chunk to the file | ||||
| 
 | ||||
| 
 | ||||
| def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): | ||||
|     # Initialize parameters dictionary with empty blocks for each layer | ||||
|     params = {"blocks": [{} for _ in range(settings["n_layer"])]} | ||||
| 
 | ||||
|     # Iterate over each variable in the checkpoint | ||||
|     for name, _ in tf.train.list_variables(ckpt_path): | ||||
|         # Load the variable and remove singleton dimensions | ||||
|         variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) | ||||
| 
 | ||||
|         # Process the variable name to extract relevant parts | ||||
|         variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix | ||||
| 
 | ||||
|         # Identify the target dictionary for the variable | ||||
|         target_dict = params | ||||
|         if variable_name_parts[0].startswith("h"): | ||||
|             layer_number = int(variable_name_parts[0][1:]) | ||||
|             target_dict = params["blocks"][layer_number] | ||||
| 
 | ||||
|         # Recursively access or create nested dictionaries | ||||
|         for key in variable_name_parts[1:-1]: | ||||
|             target_dict = target_dict.setdefault(key, {}) | ||||
| 
 | ||||
|         # Assign the variable array to the last key | ||||
|         last_key = variable_name_parts[-1] | ||||
|         target_dict[last_key] = variable_array | ||||
| 
 | ||||
|     return params | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Sebastian Raschka
						Sebastian Raschka