diff --git a/README.md b/README.md
index 5c9d6e5..d09e760 100644
--- a/README.md
+++ b/README.md
@@ -102,6 +102,7 @@ Several folders contain optional materials as a bonus for interested readers:
- [Installing Python Packages and Libraries Used In This Book](setup/02_installing-python-libraries)
- [Docker Environment Setup Guide](setup/03_optional-docker-environment)
- **Chapter 2: Working with text data**
+ - [Byte Pair Encoding (BPE) Tokenizer From Scratch](ch02/05_bpe-from-scratch/bpe-from-scratch.ipynb)
- [Comparing Various Byte Pair Encoding (BPE) Implementations](ch02/02_bonus_bytepair-encoder)
- [Understanding the Difference Between Embedding Layers and Linear Layers](ch02/03_bonus_embedding-vs-matmul)
- [Dataloader Intuition with Simple Numbers](ch02/04_bonus_dataloader-intuition)
diff --git a/ch02/01_main-chapter-code/ch02.ipynb b/ch02/01_main-chapter-code/ch02.ipynb
index 3b2e7db..3d0ad06 100644
--- a/ch02/01_main-chapter-code/ch02.ipynb
+++ b/ch02/01_main-chapter-code/ch02.ipynb
@@ -1900,7 +1900,9 @@
"source": [
"See the [./dataloader.ipynb](./dataloader.ipynb) code notebook, which is a concise version of the data loader that we implemented in this chapter and will need for training the GPT model in upcoming chapters.\n",
"\n",
- "See [./exercise-solutions.ipynb](./exercise-solutions.ipynb) for the exercise solutions."
+ "See [./exercise-solutions.ipynb](./exercise-solutions.ipynb) for the exercise solutions.\n",
+ "\n",
+ "See the [Byte Pair Encoding (BPE) Tokenizer From Scratch](../02_bonus_bytepair-encoder/compare-bpe-tiktoken.ipynb) notebook if you are interested in learning how the GPT-2 tokenizer can be implemented and trained from scratch."
]
}
],
diff --git a/ch02/02_bonus_bytepair-encoder/compare-bpe-tiktoken.ipynb b/ch02/02_bonus_bytepair-encoder/compare-bpe-tiktoken.ipynb
index b5e154c..a141079 100644
--- a/ch02/02_bonus_bytepair-encoder/compare-bpe-tiktoken.ipynb
+++ b/ch02/02_bonus_bytepair-encoder/compare-bpe-tiktoken.ipynb
@@ -67,7 +67,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "tiktoken version: 0.5.1\n"
+ "tiktoken version: 0.7.0\n"
]
}
],
@@ -180,8 +180,8 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Fetching encoder.json: 1.04Mit [00:00, 3.14Mit/s] \n",
- "Fetching vocab.bpe: 457kit [00:00, 1.67Mit/s] \n"
+ "Fetching encoder.json: 1.04Mit [00:00, 3.47Mit/s] \n",
+ "Fetching vocab.bpe: 457kit [00:00, 2.07Mit/s] \n"
]
}
],
@@ -259,7 +259,7 @@
{
"data": {
"text/plain": [
- "'4.34.0'"
+ "'4.48.0'"
]
},
"execution_count": 12,
@@ -278,78 +278,7 @@
"execution_count": 13,
"id": "a9839137-b8ea-4a2c-85fc-9a63064cf8c8",
"metadata": {},
- "outputs": [
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "e4df871bb797435787143a3abe6b0231",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading tokenizer_config.json: 0%| | 0.00/26.0 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f11b27a4aabf43af9bf57f929683def6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading vocab.json: 0%| | 0.00/1.04M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d3aa9a24aacc43108ef2ed72e7bacd33",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading merges.txt: 0%| | 0.00/456k [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f9341bc23b594bb68dcf8954bff6d9bd",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading tokenizer.json: 0%| | 0.00/1.36M [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c5f55f2f1dbc4152acc9b2061167ee0a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Downloading config.json: 0%| | 0.00/665 [00:00, ?B/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"from transformers import GPT2Tokenizer\n",
"\n",
@@ -377,6 +306,100 @@
"hf_tokenizer(strings)[\"input_ids\"]"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "9d0f2e95-8ae8-4606-a8e0-b0fce91cfac9",
+ "metadata": {},
+ "source": [
+ "
\n",
+ " \n",
+ "\n",
+ "## Using my own from-scratch BPE tokenizer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "b6e6b1a5-9dc0-4b20-9a8b-c02aa0e3191c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import sys\n",
+ "import io\n",
+ "import nbformat\n",
+ "import types\n",
+ "\n",
+ "def import_from_notebook():\n",
+ " def import_definitions_from_notebook(fullname, names):\n",
+ " current_dir = os.getcwd()\n",
+ " path = os.path.join(current_dir, \"..\", \"05_bpe-from-scratch\", fullname + \".ipynb\")\n",
+ " path = os.path.normpath(path)\n",
+ "\n",
+ " # Load the notebook\n",
+ " if not os.path.exists(path):\n",
+ " raise FileNotFoundError(f\"Notebook file not found at: {path}\")\n",
+ "\n",
+ " with io.open(path, \"r\", encoding=\"utf-8\") as f:\n",
+ " nb = nbformat.read(f, as_version=4)\n",
+ "\n",
+ " # Create a module to store the imported functions and classes\n",
+ " mod = types.ModuleType(fullname)\n",
+ " sys.modules[fullname] = mod\n",
+ "\n",
+ " # Go through the notebook cells and only execute function or class definitions\n",
+ " for cell in nb.cells:\n",
+ " if cell.cell_type == \"code\":\n",
+ " cell_code = cell.source\n",
+ " for name in names:\n",
+ " # Check for function or class definitions\n",
+ " if f\"def {name}\" in cell_code or f\"class {name}\" in cell_code:\n",
+ " exec(cell_code, mod.__dict__)\n",
+ " return mod\n",
+ "\n",
+ " fullname = \"bpe-from-scratch\"\n",
+ " names = [\"BPETokenizerSimple\"]\n",
+ "\n",
+ " return import_definitions_from_notebook(fullname, names)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "04fbd764-ec98-44f1-9b0a-e9db9a3bb91e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "imported_module = import_from_notebook()\n",
+ "BPETokenizerSimple = getattr(imported_module, \"BPETokenizerSimple\", None)\n",
+ "\n",
+ "tokenizer_gpt2 = BPETokenizerSimple()\n",
+ "tokenizer_gpt2.load_vocab_and_merges_from_openai(\n",
+ " vocab_path=os.path.join(\"gpt2_model\", \"encoder.json\"),\n",
+ " bpe_merges_path=os.path.join(\"gpt2_model\", \"vocab.bpe\")\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "5a5def88-1d2c-4550-a5e8-ee82b72b92d7",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[1544, 18798, 11, 995, 13, 1148, 256, 5303, 82, 438, 257, 1332, 30]\n"
+ ]
+ }
+ ],
+ "source": [
+ "integers = tokenizer_gpt2.encode(text)\n",
+ "\n",
+ "print(integers)"
+ ]
+ },
{
"cell_type": "markdown",
"id": "907a1ade-3401-4f2e-9017-7f58a60cbd98",
@@ -390,7 +413,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 18,
"id": "a61bb445-b151-4a2f-8180-d4004c503754",
"metadata": {},
"outputs": [],
@@ -399,9 +422,17 @@
" raw_text = f.read()"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "9c0ae9f0-47a1-4e7f-a210-e1d2721f4d1e",
+ "metadata": {},
+ "source": [
+ "### Original OpenAI GPT-2 tokenizer"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 19,
"id": "57f7c0a3-c1fd-4313-af34-68e78eb33653",
"metadata": {},
"outputs": [
@@ -409,7 +440,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "4.29 ms ± 46.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
+ "3.44 ms ± 54 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
@@ -417,9 +448,17 @@
"%timeit orig_tokenizer.encode(raw_text)"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "ef2ce3f3-1f81-47ce-b563-99fe2c7a1e90",
+ "metadata": {},
+ "source": [
+ "### Tiktoken OpenAI GPT-2 tokenizer"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 20,
"id": "036dd628-3591-46c9-a5ce-b20b105a8062",
"metadata": {},
"outputs": [
@@ -427,7 +466,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "1.4 ms ± 9.71 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
+ "1.08 ms ± 4.69 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
]
}
],
@@ -435,9 +474,17 @@
"%timeit tik_tokenizer.encode(raw_text)"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "0c748de8-273e-42df-b078-3a510106da60",
+ "metadata": {},
+ "source": [
+ "### Hugging Face OpenAI GPT-2 tokenizer"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 21,
"id": "b9c85b58-bfbc-465e-9a7e-477e53d55c90",
"metadata": {},
"outputs": [
@@ -452,7 +499,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "8.46 ms ± 48.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
+ "10.3 ms ± 180 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
@@ -462,7 +509,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 22,
"id": "7117107f-22a6-46b4-a442-712d50b3ac7a",
"metadata": {},
"outputs": [
@@ -470,13 +517,39 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "8.36 ms ± 184 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
+ "10.2 ms ± 72.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%timeit hf_tokenizer(raw_text, max_length=5145, truncation=True)[\"input_ids\"]"
]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "91ac2876-f36e-498c-bd75-8597a39f2d4b",
+ "metadata": {},
+ "source": [
+ "### My own GPT-2 tokenizer (for educational purposes)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "3b4ff4d5-f2d9-4ea6-a51c-023dbba15429",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1.74 ms ± 48.5 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
+ ]
+ }
+ ],
+ "source": [
+ "%timeit tokenizer_gpt2.encode(raw_text)"
+ ]
}
],
"metadata": {
diff --git a/ch02/05_bpe-from-scratch/bpe-from-scratch.ipynb b/ch02/05_bpe-from-scratch/bpe-from-scratch.ipynb
new file mode 100644
index 0000000..2d24547
--- /dev/null
+++ b/ch02/05_bpe-from-scratch/bpe-from-scratch.ipynb
@@ -0,0 +1,1301 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "9dec0dfb-3d60-41d0-a63a-b010dce67e32",
+ "metadata": {},
+ "source": [
+ "
\n",
+ "\n",
+ "\n",
+ "\n",
+ "Supplementary code for the Build a Large Language Model From Scratch book by Sebastian Raschka \n",
+ " Code repository: https://github.com/rasbt/LLMs-from-scratch\n",
+ "\n",
+ " | \n",
+ "\n",
+ " \n",
+ " | \n",
+ "
\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5e475425-8300-43f2-a5e8-6b5d2de59925",
+ "metadata": {},
+ "source": [
+ "# Byte Pair Encoding (BPE) Tokenizer From Scratch"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a1bfc3f3-8ec1-4fd3-b378-d9a3d7807a54",
+ "metadata": {},
+ "source": [
+ "- This is a standalone notebook implementing the popular byte pair encoding (BPE) tokenization algorithm, which is used in models like GPT-2 to GPT-4, Llama 3, etc., from scratch for educational purposes\n",
+ "- For more details about the purpose of tokenization, please refer to [Chapter 2](https://github.com/rasbt/LLMs-from-scratch/blob/main/ch02/01_main-chapter-code/ch02.ipynb); this code here is bonus material explaining the BPE algorithm\n",
+ "- The original BPE tokenizer that OpenAI implemented for training the original GPT models can be found [here](https://github.com/openai/gpt-2/blob/master/src/encoder.py)\n",
+ "- The BPE algorithm was originally described in 1994: \"[A New Algorithm for Data Compression](http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM)\" by Philip Gage\n",
+ "- Most projects, including Llama 3, nowadays use OpenAI's open-source [tiktoken library](https://github.com/openai/tiktoken) due to its computational performance; it allows loading pretrained GPT-2 and GPT-4 tokenizers, for example (the Llama 3 models were trained using the GPT-4 tokenizer as well)\n",
+ "- The difference between the implementations above and my implementation in this notebook, besides it being is that it also includes a function for training the tokenizer (for educational purposes)\n",
+ "- There's also an implementation called [minBPE](https://github.com/karpathy/minbpe) with training support, which is maybe more performant (my implementation here is focused on educational purposes); in contrast to `minbpe` my implementation additionally allows loading the original OpenAI tokenizer vocabulary and merges"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f62336db-f45c-4894-9167-7583095dbdf1",
+ "metadata": {},
+ "source": [
+ " \n",
+ "# 1. The main idea behind byte pair encoding (BPE)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cd3f1231-bd42-41b5-a017-974b8c660a44",
+ "metadata": {},
+ "source": [
+ "- The main idea in BPE is to convert text into an integer representation (token IDs) for LLM training (see [Chapter 2](https://github.com/rasbt/LLMs-from-scratch/blob/main/ch02/01_main-chapter-code/ch02.ipynb))\n",
+ "\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "760c625d-26a1-4896-98a2-0fdcd1591256",
+ "metadata": {},
+ "source": [
+ " \n",
+ "## 1.1 Bits and bytes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d4ddaa35-0ed7-4012-827e-911de11c266c",
+ "metadata": {},
+ "source": [
+ "- Before getting to the BPE algorithm, let's introduce the notion of bytes\n",
+ "- Consider converting text into a byte array (BPE stands for \"byte\" pair encoding after all):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "8c9bc9e4-120f-4bac-8fa6-6523c568d12e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "bytearray(b'This is some text')\n"
+ ]
+ }
+ ],
+ "source": [
+ "text = \"This is some text\"\n",
+ "byte_ary = bytearray(text, \"utf-8\")\n",
+ "print(byte_ary)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dbd92a2a-9d74-4dc7-bb53-ac33d6cf2fab",
+ "metadata": {},
+ "source": [
+ "- When we call `list()` on a `bytearray` object, each byte is treated as an individual element, and the result is a list of integers corresponding to the byte values:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "6c586945-d459-4f9a-855d-bf73438ef0e3",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[84, 104, 105, 115, 32, 105, 115, 32, 115, 111, 109, 101, 32, 116, 101, 120, 116]\n"
+ ]
+ }
+ ],
+ "source": [
+ "ids = list(byte_ary)\n",
+ "print(ids)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "71efea37-f4c3-4cb8-bfa5-9299175faf9a",
+ "metadata": {},
+ "source": [
+ "- This would be a valid way to convert text into a token ID representation that we need for the embedding layer of an LLM\n",
+ "- However, the downside of this approach is that it is creating one ID for each character (that's a lot of IDs for a short text!)\n",
+ "- I.e., this means for a 17-character input text, we have to use 17 token IDs as input to the LLM:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "0d5b61d9-79a0-48b4-9b3e-64ab595c5b01",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of characters: 17\n",
+ "Number of token IDs: 17\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Number of characters:\", len(text))\n",
+ "print(\"Number of token IDs:\", len(ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "68cc833a-c0d4-4d46-9180-c0042fd6addc",
+ "metadata": {},
+ "source": [
+ "- If you have worked with LLMs before, you may know that the BPE tokenizers have a vocabulary where we have a token ID for whole words or subwords instead of each character\n",
+ "- For example, the GPT-2 tokenizer tokenizes the same text (\"This is some text\") into only 4 instead of 17 tokens: `1212, 318, 617, 2420`\n",
+ "- You can double-check this using the interactive [tiktoken app](https://tiktokenizer.vercel.app/?model=gpt2) or the [tiktoken library](https://github.com/openai/tiktoken):\n",
+ "\n",
+ "
\n",
+ "\n",
+ "```python\n",
+ "import tiktoken\n",
+ "\n",
+ "gpt2_tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
+ "gpt2_tokenizer.encode(\"This is some text\")\n",
+ "# prints [1212, 318, 617, 2420]\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "425b99de-cbfc-441c-8b3e-296a5dd7bb27",
+ "metadata": {},
+ "source": [
+ "- Since a byte consists of 8 bits, there are 28 = 256 possible values that a single byte can represent, ranging from 0 to 255\n",
+ "- You can confirm this by executing the code `bytearray(range(0, 257))`, which will warn you that `ValueError: byte must be in range(0, 256)`)\n",
+ "- A BPE tokenizer usually uses these 256 values as its first 256 single-character tokens; one could visually check this by running the following code:\n",
+ "\n",
+ "```python\n",
+ "import tiktoken\n",
+ "gpt2_tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
+ "\n",
+ "for i in range(300):\n",
+ " decoded = gpt2_tokenizer.decode([i])\n",
+ " print(f\"{i}: {decoded}\")\n",
+ "\"\"\"\n",
+ "prints:\n",
+ "0: !\n",
+ "1: \"\n",
+ "2: #\n",
+ "...\n",
+ "255: � # <---- single character tokens up to here\n",
+ "256: t\n",
+ "257: a\n",
+ "...\n",
+ "298: ent\n",
+ "299: n\n",
+ "\"\"\"\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "97ff0207-7f8e-44fa-9381-2a4bd83daab3",
+ "metadata": {},
+ "source": [
+ "- Above, note that entries 256 and 257 are not single-character values but double-character values (a whitespace + a letter), which is a little shortcoming of the original GPT-2 BPE Tokenizer (this has been improved in the GPT-4 tokenizer)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8241c23a-d487-488d-bded-cdf054e24920",
+ "metadata": {},
+ "source": [
+ " \n",
+ "## 1.2 Building the vocabulary"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d7c2ceb7-0b3f-4a62-8dcc-07810cd8886e",
+ "metadata": {},
+ "source": [
+ "- The goal of the BPE tokenization algorithm is to build a vocabulary of commonly occurring subwords like `298: ent` (which can be found in *entangle, entertain, enter, entrance, entity, ...*, for example), or even complete words like \n",
+ "\n",
+ "```\n",
+ "318: is\n",
+ "617: some\n",
+ "1212: This\n",
+ "2420: text\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8c0d4420-a4c7-4813-916a-06f4f46bc3f0",
+ "metadata": {},
+ "source": [
+ "- The BPE algorithm was originally described in 1994: \"[A New Algorithm for Data Compression](http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM)\" by Philip Gage\n",
+ "- Before we get to the actual code implementation, the form that is used for LLM tokenizers today can be summarized as follows:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ebc71db9-b070-48c4-8412-81f45b308ab3",
+ "metadata": {},
+ "source": [
+ " \n",
+ "## 1.3 BPE algorithm outline\n",
+ "\n",
+ "**1. Identify frequent pairs**\n",
+ "- In each iteration, scan the text to find the most commonly occurring pair of bytes (or characters)\n",
+ "\n",
+ "**2. Replace and record**\n",
+ "\n",
+ "- Replace that pair with a new placeholder ID (one not already in use, e.g., if we start with 0...255, the first placeholder would be 256)\n",
+ "- Record this mapping in a lookup table\n",
+ "- The size of the lookup table is a hyperparameter, also called \"vocabulary size\" (for GPT-2, that's\n",
+ "50,257)\n",
+ "\n",
+ "**3. Repeat until no gains**\n",
+ "\n",
+ "- Keep repeating steps 1 and 2, continually merging the most frequent pairs\n",
+ "- Stop when no further compression is possible (e.g., no pair occurs more than once)\n",
+ "\n",
+ "**Decompression (decoding)**\n",
+ "\n",
+ "- To restore the original text, reverse the process by substituting each ID with its corresponding pair, using the lookup table\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e9f5ac9a-3528-4186-9468-8420c7b2ac00",
+ "metadata": {},
+ "source": [
+ " \n",
+ "## 1.4 BPE algorithm example\n",
+ "\n",
+ "### 1.4.1 Concrete example of the encoding part (steps 1 & 2)\n",
+ "\n",
+ "- Suppose we have the text (training dataset) `the cat in the hat` from which we want to build the vocabulary for a BPE tokenizer\n",
+ "\n",
+ "**Iteration 1**\n",
+ "\n",
+ "1. Identify frequent pairs\n",
+ " - In this text, \"th\" appears twice (at the beginning and before the second \"e\")\n",
+ "\n",
+ "2. Replace and record\n",
+ " - replace \"th\" with a new token ID that is not already in use, e.g., 256\n",
+ " - the new text is: `<256>e cat in <256>e hat`\n",
+ " - the new vocabulary is\n",
+ "\n",
+ "```\n",
+ " 0: ...\n",
+ " ...\n",
+ " 256: \"th\"\n",
+ "```\n",
+ "\n",
+ "**Iteration 2**\n",
+ "\n",
+ "1. **Identify frequent pairs** \n",
+ " - In the text `<256>e cat in <256>e hat`, the pair `<256>e` appears twice\n",
+ "\n",
+ "2. **Replace and record** \n",
+ " - replace `<256>e` with a new token ID that is not already in use, for example, `257`. \n",
+ " - The new text is:\n",
+ " ```\n",
+ " <257> cat in <257> hat\n",
+ " ```\n",
+ " - The updated vocabulary is:\n",
+ " ```\n",
+ " 0: ...\n",
+ " ...\n",
+ " 256: \"th\"\n",
+ " 257: \"<256>e\"\n",
+ " ```\n",
+ "\n",
+ "**Iteration 3**\n",
+ "\n",
+ "1. **Identify frequent pairs** \n",
+ " - In the text `<257> cat in <257> hat`, the pair `<257> ` appears twice (once at the beginning and once before “hat”).\n",
+ "\n",
+ "2. **Replace and record** \n",
+ " - replace `<257> ` with a new token ID that is not already in use, for example, `258`. \n",
+ " - the new text is:\n",
+ " ```\n",
+ " <258>cat in <258>hat\n",
+ " ```\n",
+ " - The updated vocabulary is:\n",
+ " ```\n",
+ " 0: ...\n",
+ " ...\n",
+ " 256: \"th\"\n",
+ " 257: \"<256>e\"\n",
+ " 258: \"<257> \"\n",
+ " ```\n",
+ " \n",
+ "- and so forth\n",
+ "\n",
+ " \n",
+ "### 1.4.2 Concrete example of the decoding part (steps 3)\n",
+ "\n",
+ "- To restore the original text, we reverse the process by substituting each token ID with its corresponding pair in the reverse order they were introduced\n",
+ "- Start with the final compressed text: `<258>cat in <258>hat`\n",
+ "- Substitute `<258>` → `<257> `: `<257> cat in <257> hat` \n",
+ "- Substitute `<257>` → `<256>e`: `<256>e cat in <256>e hat`\n",
+ "- Substitute `<256>` → \"th\": `the cat in the hat`"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a2324948-ddd0-45d1-8ba8-e8eda9fc6677",
+ "metadata": {},
+ "source": [
+ " \n",
+ "## 2. A simple BPE implementation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "429ca709-40d7-4e3d-bf3e-4f5687a2e19b",
+ "metadata": {},
+ "source": [
+ "- Below is an implementation of this algorithm described above as a Python class that mimics the `tiktoken` Python user interface\n",
+ "- Note that the encoding part above describes the original training step via `train()`; however, the `encode()` method works similarly (although it looks a bit more complicated because of the special token handling):\n",
+ "\n",
+ "1. Split the input text into individual bytes\n",
+ "2. Repeatedly find & replace (merge) adjacent tokens (pairs) when they match any pair in the learned BPE merges (from highest to lowest \"rank,\" i.e., in the order they were learned)\n",
+ "3. Continue merging until no more merges can be applied\n",
+ "4. The final list of token IDs is the encoded output"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "id": "3e4a15ec-2667-4f56-b7c1-34e8071b621d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from collections import Counter, deque\n",
+ "from functools import lru_cache\n",
+ "import json\n",
+ "\n",
+ "\n",
+ "class BPETokenizerSimple:\n",
+ " def __init__(self):\n",
+ " # Maps token_id to token_str (e.g., {11246: \"some\"})\n",
+ " self.vocab = {}\n",
+ " # Maps token_str to token_id (e.g., {\"some\": 11246})\n",
+ " self.inverse_vocab = {}\n",
+ " # Dictionary of BPE merges: {(token_id1, token_id2): merged_token_id}\n",
+ " self.bpe_merges = {}\n",
+ "\n",
+ " def train(self, text, vocab_size, allowed_special={\"<|endoftext|>\"}):\n",
+ " \"\"\"\n",
+ " Train the BPE tokenizer from scratch.\n",
+ "\n",
+ " Args:\n",
+ " text (str): The training text.\n",
+ " vocab_size (int): The desired vocabulary size.\n",
+ " allowed_special (set): A set of special tokens to include.\n",
+ " \"\"\"\n",
+ "\n",
+ " # Preprocess: Replace spaces with 'Ġ'\n",
+ " # Note that Ġ is a particularity of the GPT-2 BPE implementation\n",
+ " # E.g., \"Hello world\" might be tokenized as [\"Hello\", \"Ġworld\"]\n",
+ " # (GPT-4 BPE would tokenize it as [\"Hello\", \" world\"])\n",
+ " processed_text = []\n",
+ " for i, char in enumerate(text):\n",
+ " if char == \" \" and i != 0:\n",
+ " processed_text.append(\"Ġ\")\n",
+ " if char != \" \":\n",
+ " processed_text.append(char)\n",
+ " processed_text = \"\".join(processed_text)\n",
+ "\n",
+ " # Initialize vocab with unique characters, including 'Ġ' if present\n",
+ " # Start with the first 256 ASCII characters\n",
+ " unique_chars = [chr(i) for i in range(256)]\n",
+ "\n",
+ " # Extend unique_chars with characters from processed_text that are not already included\n",
+ " unique_chars.extend(char for char in sorted(set(processed_text)) if char not in unique_chars)\n",
+ "\n",
+ " # Optionally, ensure 'Ġ' is included if it is relevant to your text processing\n",
+ " if 'Ġ' not in unique_chars:\n",
+ " unique_chars.append('Ġ')\n",
+ "\n",
+ " # Now create the vocab and inverse vocab dictionaries\n",
+ " self.vocab = {i: char for i, char in enumerate(unique_chars)}\n",
+ " self.inverse_vocab = {char: i for i, char in self.vocab.items()}\n",
+ "\n",
+ " # Add allowed special tokens\n",
+ " if allowed_special:\n",
+ " for token in allowed_special:\n",
+ " if token not in self.inverse_vocab:\n",
+ " new_id = len(self.vocab)\n",
+ " self.vocab[new_id] = token\n",
+ " self.inverse_vocab[token] = new_id\n",
+ "\n",
+ " # Tokenize the processed_text into token IDs\n",
+ " token_ids = [self.inverse_vocab[char] for char in processed_text]\n",
+ "\n",
+ " # BPE steps 1-3: Repeatedly find and replace frequent pairs\n",
+ " for new_id in range(len(self.vocab), vocab_size):\n",
+ " pair_id = self.find_freq_pair(token_ids, mode=\"most\")\n",
+ " if pair_id is None: # No more pairs to merge. Stopping training.\n",
+ " break\n",
+ " token_ids = self.replace_pair(token_ids, pair_id, new_id)\n",
+ " self.bpe_merges[pair_id] = new_id\n",
+ "\n",
+ " # Build the vocabulary with merged tokens\n",
+ " for (p0, p1), new_id in self.bpe_merges.items():\n",
+ " merged_token = self.vocab[p0] + self.vocab[p1]\n",
+ " self.vocab[new_id] = merged_token\n",
+ " self.inverse_vocab[merged_token] = new_id\n",
+ "\n",
+ " def load_vocab_and_merges_from_openai(self, vocab_path, bpe_merges_path):\n",
+ " \"\"\"\n",
+ " Load pre-trained vocabulary and BPE merges from OpenAI's GPT-2 files.\n",
+ "\n",
+ " Args:\n",
+ " vocab_path (str): Path to the vocab file (GPT-2 calls it 'encoder.json').\n",
+ " bpe_merges_path (str): Path to the bpe_merges file (GPT-2 calls it 'vocab.bpe').\n",
+ " \"\"\"\n",
+ " # Load vocabulary\n",
+ " with open(vocab_path, \"r\", encoding=\"utf-8\") as file:\n",
+ " loaded_vocab = json.load(file)\n",
+ " # loaded_vocab maps token_str to token_id\n",
+ " self.vocab = {int(v): k for k, v in loaded_vocab.items()} # token_id: token_str\n",
+ " self.inverse_vocab = {k: int(v) for k, v in loaded_vocab.items()} # token_str: token_id\n",
+ "\n",
+ " # Load BPE merges\n",
+ " with open(bpe_merges_path, \"r\", encoding=\"utf-8\") as file:\n",
+ " lines = file.readlines()\n",
+ " # Skip header line if present\n",
+ " if lines and lines[0].startswith(\"#\"):\n",
+ " lines = lines[1:]\n",
+ "\n",
+ " for rank, line in enumerate(lines):\n",
+ " pair = tuple(line.strip().split())\n",
+ " if len(pair) != 2:\n",
+ " print(f\"Line {rank+1} has more than 2 entries: {line.strip()}\")\n",
+ " continue\n",
+ " token1, token2 = pair\n",
+ " if token1 in self.inverse_vocab and token2 in self.inverse_vocab:\n",
+ " token_id1 = self.inverse_vocab[token1]\n",
+ " token_id2 = self.inverse_vocab[token2]\n",
+ " merged_token = token1 + token2\n",
+ " if merged_token in self.inverse_vocab:\n",
+ " merged_token_id = self.inverse_vocab[merged_token]\n",
+ " self.bpe_merges[(token_id1, token_id2)] = merged_token_id\n",
+ " # print(f\"Loaded merge: '{token1}' + '{token2}' -> '{merged_token}' (ID: {merged_token_id})\")\n",
+ " else:\n",
+ " print(f\"Merged token '{merged_token}' not found in vocab. Skipping.\")\n",
+ " else:\n",
+ " print(f\"Skipping pair {pair} as one of the tokens is not in the vocabulary.\")\n",
+ "\n",
+ " def encode(self, text):\n",
+ " \"\"\"\n",
+ " Encode the input text into a list of token IDs.\n",
+ "\n",
+ " Args:\n",
+ " text (str): The text to encode.\n",
+ "\n",
+ " Returns:\n",
+ " List[int]: The list of token IDs.\n",
+ " \"\"\"\n",
+ " tokens = []\n",
+ " # Split text into tokens, keeping newlines intact\n",
+ " words = text.replace(\"\\n\", \" \\n \").split() # Ensure '\\n' is treated as a separate token\n",
+ "\n",
+ " for i, word in enumerate(words):\n",
+ " if i > 0 and not word.startswith(\"\\n\"):\n",
+ " tokens.append(\"Ġ\" + word) # Add 'Ġ' to words that follow a space or newline\n",
+ " else:\n",
+ " tokens.append(word) # Handle first word or standalone '\\n'\n",
+ "\n",
+ " token_ids = []\n",
+ " for token in tokens:\n",
+ " if token in self.inverse_vocab:\n",
+ " # token is contained in the vocabulary as is\n",
+ " token_id = self.inverse_vocab[token]\n",
+ " token_ids.append(token_id)\n",
+ " else:\n",
+ " # Attempt to handle subword tokenization via BPE\n",
+ " sub_token_ids = self.tokenize_with_bpe(token)\n",
+ " token_ids.extend(sub_token_ids)\n",
+ "\n",
+ " return token_ids\n",
+ "\n",
+ " def tokenize_with_bpe(self, token):\n",
+ " \"\"\"\n",
+ " Tokenize a single token using BPE merges.\n",
+ "\n",
+ " Args:\n",
+ " token (str): The token to tokenize.\n",
+ "\n",
+ " Returns:\n",
+ " List[int]: The list of token IDs after applying BPE.\n",
+ " \"\"\"\n",
+ " # Tokenize the token into individual characters (as initial token IDs)\n",
+ " token_ids = [self.inverse_vocab.get(char, None) for char in token]\n",
+ " if None in token_ids:\n",
+ " missing_chars = [char for char, tid in zip(token, token_ids) if tid is None]\n",
+ " raise ValueError(f\"Characters not found in vocab: {missing_chars}\")\n",
+ "\n",
+ " can_merge = True\n",
+ " while can_merge and len(token_ids) > 1:\n",
+ " can_merge = False\n",
+ " new_tokens = []\n",
+ " i = 0\n",
+ " while i < len(token_ids) - 1:\n",
+ " pair = (token_ids[i], token_ids[i + 1])\n",
+ " if pair in self.bpe_merges:\n",
+ " merged_token_id = self.bpe_merges[pair]\n",
+ " new_tokens.append(merged_token_id)\n",
+ " # Uncomment for educational purposes:\n",
+ " # print(f\"Merged pair {pair} -> {merged_token_id} ('{self.vocab[merged_token_id]}')\")\n",
+ " i += 2 # Skip the next token as it's merged\n",
+ " can_merge = True\n",
+ " else:\n",
+ " new_tokens.append(token_ids[i])\n",
+ " i += 1\n",
+ " if i < len(token_ids):\n",
+ " new_tokens.append(token_ids[i])\n",
+ " token_ids = new_tokens\n",
+ "\n",
+ " return token_ids\n",
+ "\n",
+ " def decode(self, token_ids):\n",
+ " \"\"\"\n",
+ " Decode a list of token IDs back into a string.\n",
+ "\n",
+ " Args:\n",
+ " token_ids (List[int]): The list of token IDs to decode.\n",
+ "\n",
+ " Returns:\n",
+ " str: The decoded string.\n",
+ " \"\"\"\n",
+ " decoded_string = \"\"\n",
+ " for token_id in token_ids:\n",
+ " if token_id not in self.vocab:\n",
+ " raise ValueError(f\"Token ID {token_id} not found in vocab.\")\n",
+ " token = self.vocab[token_id]\n",
+ " if token.startswith(\"Ġ\"):\n",
+ " # Replace 'Ġ' with a space\n",
+ " decoded_string += \" \" + token[1:]\n",
+ " else:\n",
+ " decoded_string += token\n",
+ " return decoded_string\n",
+ "\n",
+ " def save_vocab_and_merges(self, vocab_path, bpe_merges_path):\n",
+ " \"\"\"\n",
+ " Save the vocabulary and BPE merges to JSON files.\n",
+ "\n",
+ " Args:\n",
+ " vocab_path (str): Path to save the vocabulary.\n",
+ " bpe_merges_path (str): Path to save the BPE merges.\n",
+ " \"\"\"\n",
+ " # Save vocabulary\n",
+ " with open(vocab_path, \"w\", encoding=\"utf-8\") as file:\n",
+ " json.dump({k: v for k, v in self.vocab.items()}, file, ensure_ascii=False, indent=2)\n",
+ "\n",
+ " # Save BPE merges as a list of dictionaries\n",
+ " with open(bpe_merges_path, \"w\", encoding=\"utf-8\") as file:\n",
+ " merges_list = [{\"pair\": list(pair), \"new_id\": new_id}\n",
+ " for pair, new_id in self.bpe_merges.items()]\n",
+ " json.dump(merges_list, file, ensure_ascii=False, indent=2)\n",
+ "\n",
+ " def load_vocab_and_merges(self, vocab_path, bpe_merges_path):\n",
+ " \"\"\"\n",
+ " Load the vocabulary and BPE merges from JSON files.\n",
+ "\n",
+ " Args:\n",
+ " vocab_path (str): Path to the vocabulary file.\n",
+ " bpe_merges_path (str): Path to the BPE merges file.\n",
+ " \"\"\"\n",
+ " # Load vocabulary\n",
+ " with open(vocab_path, \"r\", encoding=\"utf-8\") as file:\n",
+ " loaded_vocab = json.load(file)\n",
+ " self.vocab = {int(k): v for k, v in loaded_vocab.items()}\n",
+ " self.inverse_vocab = {v: int(k) for k, v in loaded_vocab.items()}\n",
+ "\n",
+ " # Load BPE merges\n",
+ " with open(bpe_merges_path, \"r\", encoding=\"utf-8\") as file:\n",
+ " merges_list = json.load(file)\n",
+ " for merge in merges_list:\n",
+ " pair = tuple(merge['pair'])\n",
+ " new_id = merge['new_id']\n",
+ " self.bpe_merges[pair] = new_id\n",
+ "\n",
+ " @lru_cache(maxsize=None)\n",
+ " def get_special_token_id(self, token):\n",
+ " return self.inverse_vocab.get(token, None)\n",
+ "\n",
+ " @staticmethod\n",
+ " def find_freq_pair(token_ids, mode=\"most\"):\n",
+ " pairs = Counter(zip(token_ids, token_ids[1:]))\n",
+ "\n",
+ " if mode == \"most\":\n",
+ " return max(pairs.items(), key=lambda x: x[1])[0]\n",
+ " elif mode == \"least\":\n",
+ " return min(pairs.items(), key=lambda x: x[1])[0]\n",
+ " else:\n",
+ " raise ValueError(\"Invalid mode. Choose 'most' or 'least'.\")\n",
+ "\n",
+ " @staticmethod\n",
+ " def replace_pair(token_ids, pair_id, new_id):\n",
+ " dq = deque(token_ids)\n",
+ " replaced = []\n",
+ "\n",
+ " while dq:\n",
+ " current = dq.popleft()\n",
+ " if dq and (current, dq[0]) == pair_id:\n",
+ " replaced.append(new_id)\n",
+ " # Remove the 2nd token of the pair, 1st was already removed\n",
+ " dq.popleft()\n",
+ " else:\n",
+ " replaced.append(current)\n",
+ "\n",
+ " return replaced"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "46db7310-79c7-4ee0-b5fa-d760c6e1aa67",
+ "metadata": {},
+ "source": [
+ "- There is a lot of code in the `BPETokenizerSimple` class above, and discussing it in detail is out of scope for this notebook, but the next section offers a short overview of the usage to understand the class methods a bit better"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8ffe1836-eed4-40dc-860b-2d23074d067e",
+ "metadata": {},
+ "source": [
+ "## 3. BPE implementation walkthrough"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3c7c996c-fd34-484f-a877-13d977214cf7",
+ "metadata": {},
+ "source": [
+ "- In practice, I highly recommend using [tiktoken](https://github.com/openai/tiktoken) as my implementation above focuses on readability and educational purposes, not on performance\n",
+ "- However, the usage is more or less similar to tiktoken, except that tiktoken does not have a training method\n",
+ "- Let's see how my `BPETokenizerSimple` Python code above works by looking at some examples below (a detailed code discussion is out of scope for this notebook)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e82acaf6-7ed5-4d3b-81c0-ae4d3559d2c7",
+ "metadata": {},
+ "source": [
+ "### 3.1 Training, encoding, and decoding"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "962bf037-903e-4555-b09c-206e1a410278",
+ "metadata": {},
+ "source": [
+ "- First, let's consider some sample text as our training dataset:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "id": "4d197cad-ed10-4a42-b01c-a763859781fb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import urllib.request\n",
+ "\n",
+ "if not os.path.exists(\"the-verdict.txt\"):\n",
+ " url = (\"https://raw.githubusercontent.com/rasbt/\"\n",
+ " \"LLMs-from-scratch/main/ch02/01_main-chapter-code/\"\n",
+ " \"the-verdict.txt\")\n",
+ " file_path = \"the-verdict.txt\"\n",
+ " urllib.request.urlretrieve(url, file_path)\n",
+ "\n",
+ "with open(\"the-verdict.txt\", \"r\", encoding=\"utf-8\") as f:\n",
+ " text = f.read()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "04d1b6ac-71d3-4817-956a-9bc7e463a84a",
+ "metadata": {},
+ "source": [
+ "- Next, let's initialize and train the BPE tokenizer with a vocabulary size of 1,000\n",
+ "- Note that the vocabulary size is already 255 by default due to the byte values discussed earlier, so we are only \"learning\" 745 vocabulary entries \n",
+ "- For comparison, the GPT-2 vocabulary is 50,257 tokens, the GPT-4 vocabulary is 100,256 tokens (`cl100k_base` in tiktoken), and GPT-4o uses 199,997 tokens (`o200k_base` in tiktoken); they have all much bigger training sets compared to our simple example text above"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 79,
+ "id": "027348fd-d52f-4396-93dd-38eed142df9b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tokenizer = BPETokenizerSimple()\n",
+ "tokenizer.train(text, vocab_size=1000, allowed_special={\"<|endoftext|>\"})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2474ff05-5629-4f13-9e03-a47b1e713850",
+ "metadata": {},
+ "source": [
+ "- You may want to inspect the vocabulary contents (but note it will create a long list)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "id": "f705a283-355e-4460-b940-06bbc2ae4e61",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1000\n"
+ ]
+ }
+ ],
+ "source": [
+ "# print(tokenizer.vocab)\n",
+ "print(len(tokenizer.vocab))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "36c9da0f-8a18-41cd-91ea-9ccc2bb5febb",
+ "metadata": {},
+ "source": [
+ "- This vocabulary is created by merging 742 times (~ `1000 - len(range(0, 256))`)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "id": "3da42d1c-f75c-4ba7-a6c5-4cb8543d4a44",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "742\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(len(tokenizer.bpe_merges))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5dac69c9-8413-482a-8148-6b2afbf1fb89",
+ "metadata": {},
+ "source": [
+ "- This means that the first 256 entries are single-character tokens"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "451a4108-7c8b-4b98-9c67-d622e9cdf250",
+ "metadata": {},
+ "source": [
+ "- Next, let's use the created merges via the `encode` method to encode some text:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 82,
+ "id": "e1db5cce-e015-412b-ad56-060b8b638078",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[424, 256, 654, 531, 302, 311, 256, 296, 97, 465, 121, 595, 841, 116, 287, 466, 256, 326, 972, 46]\n"
+ ]
+ }
+ ],
+ "source": [
+ "input_text = \"Jack embraced beauty through art and life.\"\n",
+ "token_ids = tokenizer.encode(input_text)\n",
+ "print(token_ids)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "id": "1ed1b344-f7d4-4e9e-ac34-2a04b5c5b7a8",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of characters: 42\n",
+ "Number of token IDs: 20\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Number of characters:\", len(input_text))\n",
+ "print(\"Number of token IDs:\", len(token_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "50c1cfb9-402a-4e1e-9678-0b7547406248",
+ "metadata": {},
+ "source": [
+ "- From the lengths above, we can see that a 42-character sentence was encoded into 20 token IDs, effectively cutting the input length roughly in half compared to a character-byte-based encoding"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "252693ee-e806-4dac-ab76-2c69086360f4",
+ "metadata": {},
+ "source": [
+ "- Note that the vocabulary itself is used in the `decoder()` method, which allows us to map the token IDs back into text:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "id": "da0e1faf-1933-43d9-b681-916c282a8f86",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[424, 256, 654, 531, 302, 311, 256, 296, 97, 465, 121, 595, 841, 116, 287, 466, 256, 326, 972, 46]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(token_ids)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 85,
+ "id": "8b690e83-5d6b-409a-804e-321c287c24a4",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Jack embraced beauty through art and life.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(tokenizer.decode(token_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "adea5d09-e5ef-4721-994b-b9b25662fa0a",
+ "metadata": {},
+ "source": [
+ "- Iterating over each token ID can give us a better understanding of how the token IDs are decoded via the vocabulary:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 86,
+ "id": "2b9e6289-92cb-4d88-b3c8-e836d7c8095f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "424 -> Jack\n",
+ "256 -> \n",
+ "654 -> em\n",
+ "531 -> br\n",
+ "302 -> ac\n",
+ "311 -> ed\n",
+ "256 -> \n",
+ "296 -> be\n",
+ "97 -> a\n",
+ "465 -> ut\n",
+ "121 -> y\n",
+ "595 -> through\n",
+ "841 -> ar\n",
+ "116 -> t\n",
+ "287 -> a\n",
+ "466 -> nd\n",
+ "256 -> \n",
+ "326 -> li\n",
+ "972 -> fe\n",
+ "46 -> .\n"
+ ]
+ }
+ ],
+ "source": [
+ "for token_id in token_ids:\n",
+ " print(f\"{token_id} -> {tokenizer.decode([token_id])}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5ea41c6c-5538-4fd5-8b5f-195960853b71",
+ "metadata": {},
+ "source": [
+ "- As we can see, most token IDs represent 2-character subwords; that's because the training data text is very short with not that many repetitive words, and because we used a relatively small vocabulary size"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "600055a3-7ec8-4abf-b88a-c4186fb71463",
+ "metadata": {},
+ "source": [
+ "- As a summary, calling `decode(encode())` should be able to reproduce arbitrary input texts:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 87,
+ "id": "c7056cb1-a9a3-4cf6-8364-29fb493ae240",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'This is some text.'"
+ ]
+ },
+ "execution_count": 87,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tokenizer.decode(tokenizer.encode(\"This is some text.\"))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a63b42bb-55bc-4c9d-b859-457a28b76302",
+ "metadata": {},
+ "source": [
+ "### 3.2 Saving and loading the tokenizer"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "86210925-06dc-4e8c-87bd-821569cd7142",
+ "metadata": {},
+ "source": [
+ "- Next, let's look at how we can save the trained tokenizer for reuse later:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 88,
+ "id": "955181cb-0910-4c6a-9c22-d8292a3ec1fc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Save trained tokenizer\n",
+ "tokenizer.save_vocab_and_merges(vocab_path=\"vocab.json\", bpe_merges_path=\"bpe_merges.txt\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 89,
+ "id": "6e5ccfe7-ac67-42f3-b727-87886a8867f1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load tokenizer\n",
+ "tokenizer2 = BPETokenizerSimple()\n",
+ "tokenizer2.load_vocab_and_merges(vocab_path=\"vocab.json\", bpe_merges_path=\"bpe_merges.txt\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e7f9bcc2-3b27-4473-b75e-4f289d52a7cc",
+ "metadata": {},
+ "source": [
+ "- The loaded tokenizer should be able to produce the same results as before:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "id": "00d9bf8f-756f-48bf-81b8-b890e2c2ef13",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Jack embraced beauty through art and life.\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(tokenizer2.decode(token_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b24d10b2-1ab8-44ee-b51a-14248e30d662",
+ "metadata": {},
+ "source": [
+ " \n",
+ "### 3.3 Loading the original GPT-2 BPE tokenizer from OpenAI"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "df07e031-9495-4af1-929f-3f16cbde82a5",
+ "metadata": {},
+ "source": [
+ "- Finally, let's load OpenAI's GPT-2 tokenizer files"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 91,
+ "id": "b45b4366-2c2b-4309-9a14-febf3add8512",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "vocab.bpe already exists\n",
+ "encoder.json already exists\n"
+ ]
+ }
+ ],
+ "source": [
+ "import os\n",
+ "import urllib.request\n",
+ "\n",
+ "def download_file_if_absent(url, filename):\n",
+ " if not os.path.exists(filename):\n",
+ " try:\n",
+ " with urllib.request.urlopen(url) as response, open(filename, 'wb') as out_file:\n",
+ " out_file.write(response.read())\n",
+ " print(f\"Downloaded {filename}\")\n",
+ " except Exception as e:\n",
+ " print(f\"Failed to download {filename}. Error: {e}\")\n",
+ " else:\n",
+ " print(f\"{filename} already exists\")\n",
+ "\n",
+ "files_to_download = {\n",
+ " \"https://openaipublic.blob.core.windows.net/gpt-2/models/124M/vocab.bpe\": \"vocab.bpe\",\n",
+ " \"https://openaipublic.blob.core.windows.net/gpt-2/models/124M/encoder.json\": \"encoder.json\"\n",
+ "}\n",
+ "\n",
+ "for url, filename in files_to_download.items():\n",
+ " download_file_if_absent(url, filename)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3fe260a0-1d5f-4bbd-9934-5117052764d1",
+ "metadata": {},
+ "source": [
+ "- Next, we load the files via the `load_vocab_and_merges_from_openai` method:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 92,
+ "id": "74306e6c-47d3-45a3-9e0f-93f7303ef601",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tokenizer_gpt2 = BPETokenizerSimple()\n",
+ "tokenizer_gpt2.load_vocab_and_merges_from_openai(\n",
+ " vocab_path=\"encoder.json\", bpe_merges_path=\"vocab.bpe\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e1d012ce-9e87-47d7-8a1b-b6d6294d76c0",
+ "metadata": {},
+ "source": [
+ "- The vocabulary size should be `50257` as we can confirm via the code below:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 93,
+ "id": "2bb722b4-dbf5-4a0c-9120-efda3293f132",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "50257"
+ ]
+ },
+ "execution_count": 93,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(tokenizer_gpt2.vocab)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7ea44b45-f524-44b5-a53a-f6d7f483fc19",
+ "metadata": {},
+ "source": [
+ "- We can now use the GPT-2 tokenizer via our `BPETokenizerSimple` object:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 97,
+ "id": "e4866de7-fb32-4dd6-a878-469ec734641c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[1212, 318, 617, 2420]\n"
+ ]
+ }
+ ],
+ "source": [
+ "input_text = \"This is some text\"\n",
+ "token_ids = tokenizer_gpt2.encode(input_text)\n",
+ "print(token_ids)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 98,
+ "id": "3da8d9b2-af55-4b09-95d7-fabd983e919e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "This is some text\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(tokenizer_gpt2.decode(token_ids))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 99,
+ "id": "460deb85-8de7-40c7-ba18-3c17831fa8ab",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[1212, 318, 617, 2420]"
+ ]
+ },
+ "execution_count": 99,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import tiktoken\n",
+ "\n",
+ "tik_tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
+ "tik_tokenizer.encode(input_text)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b3b1e2dc-f69b-4533-87ef-549e6fb9b5a0",
+ "metadata": {},
+ "source": [
+ "- You can double-check that this produces the correct tokens using the interactive [tiktoken app](https://tiktokenizer.vercel.app/?model=gpt2) or the [tiktoken library](https://github.com/openai/tiktoken):\n",
+ "\n",
+ "
\n",
+ "\n",
+ "```python\n",
+ "import tiktoken\n",
+ "\n",
+ "gpt2_tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
+ "gpt2_tokenizer.encode(\"This is some text\")\n",
+ "# prints [1212, 318, 617, 2420]\n",
+ "```\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3558af04-483c-4f6b-88f5-a534f37316cd",
+ "metadata": {},
+ "source": [
+ " \n",
+ "# 4. Conclusion"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "410ed0e6-ad06-4bb3-bb39-6b8110c1caa4",
+ "metadata": {},
+ "source": [
+ "- That's it! That's how BPE works in a nutshell, complete with a training method for creating new tokenizers or loading the GPT-2 tokenizer vocabular and merges from the original OpenAI GPT-2 model\n",
+ "- I hope you found this brief tutorial useful for educational purposes; if you have any questions, please feel free to open a new Discussion [here](https://github.com/rasbt/LLMs-from-scratch/discussions/categories/q-a)\n",
+ "- For a performance comparison with other tokenizer implementations, please see [this notebook](https://github.com/rasbt/LLMs-from-scratch/blob/main/ch02/02_bonus_bytepair-encoder/compare-bpe-tiktoken.ipynb)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}