also add simple wrapper

This commit is contained in:
rasbt 2024-03-06 08:38:53 -06:00
parent 571377a2d6
commit b6fe1a37b3
3 changed files with 104 additions and 15 deletions

View File

@ -1865,7 +1865,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.10.6"
}
},
"nbformat": 4,

View File

@ -2,6 +2,47 @@ import torch
import torch.nn as nn
class CausalAttention(nn.Module):
def __init__(self, d_in, d_out, block_size, dropout, qkv_bias=False):
super().__init__()
self.d_out = d_out
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
self.dropout = nn.Dropout(dropout) # New
self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1)) # New
def forward(self, x):
b, num_tokens, d_in = x.shape # New batch dimension b
keys = self.W_key(x)
queries = self.W_query(x)
values = self.W_value(x)
attn_scores = queries @ keys.transpose(1, 2) # Changed transpose
attn_scores.masked_fill_( # New, _ ops are in-place
self.mask.bool()[:num_tokens, :num_tokens], -torch.inf)
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
attn_weights = self.dropout(attn_weights) # New
context_vec = attn_weights @ values
return context_vec
class MultiHeadAttentionWrapper(nn.Module):
def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False):
super().__init__()
self.heads = nn.ModuleList(
[CausalAttention(d_in, d_out, block_size, dropout, qkv_bias)
for _ in range(num_heads)]
)
def forward(self, x):
return torch.cat([head(x) for head in self.heads], dim=-1)
class MultiHeadAttention(nn.Module):
def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False):
super().__init__()

View File

@ -13,7 +13,7 @@
"id": "2f9bb1b6-a1e5-4e0a-884d-0f31b374a8d6",
"metadata": {},
"source": [
"## Multi-head attention implementation from chapter 3"
"## Multi-head attention implementations from chapter 3"
]
},
{
@ -36,6 +36,36 @@
{
"cell_type": "code",
"execution_count": 2,
"id": "297c93ed-aec0-4896-bb89-42c4b294d3d1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([8, 1024, 9216])\n"
]
}
],
"source": [
"from ch03 import MultiHeadAttentionWrapper as Ch03_MHA_1\n",
"\n",
"mha_ch03_1 = Ch03_MHA_1(\n",
" d_in=embed_dim,\n",
" d_out=embed_dim,\n",
" block_size=context_len,\n",
" dropout=0.0,\n",
" num_heads=12,\n",
" qkv_bias=False\n",
")\n",
"\n",
"out = mha_ch03_1(embeddings)\n",
"print(out.shape)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4ee6a61b-d25c-4a0c-8a59-f285544e3710",
"metadata": {},
"outputs": [
@ -48,9 +78,9 @@
}
],
"source": [
"from ch03 import MultiHeadAttention as Ch03_MHA\n",
"from ch03 import MultiHeadAttention as Ch03_MHA_2\n",
"\n",
"mha_ch03 = Ch03_MHA(\n",
"mha_ch03_2 = Ch03_MHA_2(\n",
" d_in=embed_dim,\n",
" d_out=embed_dim,\n",
" block_size=context_len,\n",
@ -59,7 +89,7 @@
" qkv_bias=False\n",
")\n",
"\n",
"out = mha_ch03(embeddings)\n",
"out = mha_ch03_2(embeddings)\n",
"print(out.shape)"
]
},
@ -89,7 +119,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"id": "9a6bd0a2-f27c-4602-afa0-c96cd295c1a6",
"metadata": {},
"outputs": [
@ -192,7 +222,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"id": "1b8e5a0d-1f65-4a03-bf6e-723f0cc428f5",
"metadata": {},
"outputs": [],
@ -243,7 +273,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 6,
"id": "fbc8ba92-3471-41cb-b1b2-4c0ef5be392b",
"metadata": {},
"outputs": [
@ -279,7 +309,25 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 7,
"id": "a97c0b2e-6593-49d8-98bc-2267b3aa610f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"879 ms ± 4.01 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%timeit mha_ch03_1(embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "19db9c2c-8e75-431a-8eef-0b4d8284e6e6",
"metadata": {},
"outputs": [
@ -287,17 +335,17 @@
"name": "stdout",
"output_type": "stream",
"text": [
"253 ms ± 9.85 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
"259 ms ± 7.91 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%timeit mha_ch03(embeddings)"
"%timeit mha_ch03_2(embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 9,
"id": "aa526ee0-7a88-4f34-a49a-f8f97da83779",
"metadata": {},
"outputs": [
@ -305,7 +353,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"309 ms ± 26.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
"290 ms ± 2.58 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
@ -315,7 +363,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 10,
"id": "cc2b4256-16d8-4c34-9fd0-d4b4af0e60fa",
"metadata": {},
"outputs": [
@ -323,7 +371,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"90.4 ms ± 719 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
"91.5 ms ± 1.04 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],