mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-11-01 18:30:00 +00:00
parent
2af686d70b
commit
ba0370abd1
@ -218,3 +218,64 @@ As sequence length increases, the benefits and downsides of a KV cache become mo
|
||||
|
||||
|
||||
|
||||
|
||||
## Optimizing the KV Cache Implementation
|
||||
|
||||
While my conceptual implementation of a KV cache above helps with clarity and is mainly geared towards code readability and educational purposes, deploying it in real-world scenarios (especially with larger models and longer sequence lengths) requires more careful optimization.
|
||||
|
||||
|
||||
### Common pitfalls when scaling the cache
|
||||
|
||||
- **Memory fragmentation and repeated allocations**: Continuously concatenating tensors via `torch.cat` as shown earlier, leads to performance bottlenecks due to frequent memory allocation and reallocation.
|
||||
|
||||
- **Linear growth in memory usage**: Without proper handling, the KV cache size becomes impractical for very long sequences.
|
||||
|
||||
|
||||
#### Tip 1: Pre-allocate Memory
|
||||
|
||||
Rather than concatenating tensors repeatedly, we could pre-allocate a sufficiently large tensor based on the expected maximum sequence length. This ensures consistent memory use and reduces overhead. In pseudo-code, this may look like as follows:
|
||||
|
||||
```python
|
||||
# Example pre-allocation for keys and values
|
||||
max_seq_len = 1024 # maximum expected sequence length
|
||||
cache_k = torch.zeros((batch_size, num_heads, max_seq_len, head_dim), device=device)
|
||||
cache_v = torch.zeros((batch_size, num_heads, max_seq_len, head_dim), device=device)
|
||||
```
|
||||
|
||||
During inference, we can then simply write into slices of these pre-allocated tensors.
|
||||
|
||||
|
||||
#### Tip 2: Truncate Cache via Sliding Window
|
||||
|
||||
To avoid blowing up our GPU memory, we can implement a sliding window approach with dynamic truncation. Via the sliding window, we maintain only the last `window_size` tokens in the cache:
|
||||
|
||||
|
||||
```python
|
||||
# Sliding window cache implementation
|
||||
window_size = 512
|
||||
cache_k = cache_k[:, :, -window_size:, :]
|
||||
cache_v = cache_v[:, :, -window_size:, :]
|
||||
```
|
||||
|
||||
|
||||
#### Optimizations in practice
|
||||
|
||||
You can find these optimizations in the [`gpt_with_kv_cache_optimized.py`](gpt_with_kv_cache_optimized.py) file.
|
||||
|
||||
|
||||
On a Mac Mini with an M4 chip (CPU), with a 200-token generation and a window size of 48 below, the code runtimes compare as follows:
|
||||
|
||||
| | Tokens/sec |
|
||||
| -------------------------------- | ---------- |
|
||||
| `gpt_ch04.py` | 27 |
|
||||
| `gpt_with_kv_cache.py` | 110 |
|
||||
| `gpt_with_kv_cache_optimized.py` | 148 |
|
||||
|
||||
Unfortunately, the speed advantages disappear on CUDA devices as this is a tiny model, and the device transfer and communication outweigh the benefits of a KV cache for this small model. However, we can see a significant difference in the memory usage:
|
||||
|
||||
| | RAM |
|
||||
| -------------------------------- | ------- |
|
||||
| `gpt_ch04.py` | 0.74 GB |
|
||||
| `gpt_with_kv_cache.py` | 4.35 GB |
|
||||
| `gpt_with_kv_cache_optimized.py` | 0.89 GB |
|
||||
|
||||
|
||||
380
ch04/03_kv-cache/gpt_with_kv_cache_optimized.py
Normal file
380
ch04/03_kv-cache/gpt_with_kv_cache_optimized.py
Normal file
@ -0,0 +1,380 @@
|
||||
# This file collects all the relevant code that we covered thus far
|
||||
# throughout Chapters 3-4.
|
||||
# This file can be run as a standalone script.
|
||||
|
||||
import time
|
||||
import tiktoken
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
#####################################
|
||||
# Chapter 3
|
||||
#####################################
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False, max_seq_len=None, window_size=None):
|
||||
super().__init__()
|
||||
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
|
||||
|
||||
self.d_out = d_out
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
||||
|
||||
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
####################################################
|
||||
# NEW
|
||||
self.max_seq_len = max_seq_len or context_length
|
||||
self.window_size = window_size or self.max_seq_len
|
||||
self.register_buffer("cache_k", None, persistent=False)
|
||||
self.register_buffer("cache_v", None, persistent=False)
|
||||
####################################################
|
||||
|
||||
def forward(self, x, use_cache=False):
|
||||
b, num_tokens, d_in = x.shape
|
||||
|
||||
keys_new = self.W_key(x) # Shape: (b, num_tokens, d_out)
|
||||
values_new = self.W_value(x)
|
||||
queries = self.W_query(x)
|
||||
|
||||
# We implicitly split the matrix by adding a `num_heads` dimension
|
||||
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
||||
keys_new = keys_new.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
values_new = values_new.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
|
||||
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
|
||||
keys_new = keys_new.transpose(1, 2)
|
||||
values_new = values_new.transpose(1, 2)
|
||||
queries = queries.transpose(1, 2)
|
||||
|
||||
####################################################
|
||||
# NEW
|
||||
if use_cache:
|
||||
if self.cache_k is None or self.cache_k.size(0) != b:
|
||||
self.cache_k = torch.zeros(b, self.num_heads, self.max_seq_len, self.head_dim, device=x.device)
|
||||
self.cache_v = torch.zeros(b, self.num_heads, self.max_seq_len, self.head_dim, device=x.device)
|
||||
self.current_pos = 0
|
||||
|
||||
# write new entries
|
||||
start = self.current_pos
|
||||
end = start + num_tokens
|
||||
self.cache_k[:, :, start:end, :] = keys_new
|
||||
self.cache_v[:, :, start:end, :] = values_new
|
||||
self.current_pos = end
|
||||
|
||||
# sliding window truncation
|
||||
if self.current_pos > self.window_size:
|
||||
self.cache_k = self.cache_k[:, :, -self.window_size:, :]
|
||||
self.cache_v = self.cache_v[:, :, -self.window_size:, :]
|
||||
self.current_pos = self.window_size
|
||||
|
||||
keys = self.cache_k[:, :, :self.current_pos, :]
|
||||
values = self.cache_v[:, :, :self.current_pos, :]
|
||||
else:
|
||||
keys = keys_new
|
||||
values = values_new
|
||||
####################################################
|
||||
|
||||
|
||||
# Compute scaled dot-product attention (aka self-attention) with a causal mask
|
||||
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
||||
|
||||
####################################################
|
||||
# NEW
|
||||
K = attn_scores.size(-1)
|
||||
|
||||
if num_tokens == K:
|
||||
# No cache → use the pre‑baked triangular mask slice
|
||||
causal_mask = torch.triu(torch.ones(num_tokens, K, device=x.device, dtype=torch.bool), diagonal=1)
|
||||
else:
|
||||
# Cached: need to offset the diagonal by (K − num_tokens)
|
||||
offset = K - num_tokens # number of tokens already in cache before this chunk
|
||||
row_idx = torch.arange(num_tokens, device=x.device).unsqueeze(1) # (num_tokens, 1)
|
||||
col_idx = torch.arange(K, device=x.device).unsqueeze(0) # (1, K)
|
||||
causal_mask = row_idx + offset < col_idx # True where j > i+offset
|
||||
####################################################
|
||||
|
||||
# Use the mask to fill attention scores
|
||||
attn_scores.masked_fill_(causal_mask.unsqueeze(0).unsqueeze(0), -torch.inf)
|
||||
|
||||
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
||||
attn_weights = self.dropout(attn_weights)
|
||||
|
||||
# Shape: (b, num_tokens, num_heads, head_dim)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
|
||||
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||||
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
|
||||
context_vec = self.out_proj(context_vec) # optional projection
|
||||
|
||||
return context_vec
|
||||
|
||||
####################################################
|
||||
# NEW
|
||||
def reset_cache(self):
|
||||
self.cache_k, self.cache_v = None, None
|
||||
####################################################
|
||||
|
||||
|
||||
#####################################
|
||||
# Chapter 4
|
||||
#####################################
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, emb_dim):
|
||||
super().__init__()
|
||||
self.eps = 1e-5
|
||||
self.scale = nn.Parameter(torch.ones(emb_dim))
|
||||
self.shift = nn.Parameter(torch.zeros(emb_dim))
|
||||
|
||||
def forward(self, x):
|
||||
mean = x.mean(dim=-1, keepdim=True)
|
||||
var = x.var(dim=-1, keepdim=True, unbiased=False)
|
||||
norm_x = (x - mean) / torch.sqrt(var + self.eps)
|
||||
return self.scale * norm_x + self.shift
|
||||
|
||||
|
||||
class GELU(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return 0.5 * x * (1 + torch.tanh(
|
||||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||||
(x + 0.044715 * torch.pow(x, 3))
|
||||
))
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, cfg):
|
||||
super().__init__()
|
||||
self.layers = nn.Sequential(
|
||||
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
|
||||
GELU(),
|
||||
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, cfg):
|
||||
super().__init__()
|
||||
self.att = MultiHeadAttention(
|
||||
d_in=cfg["emb_dim"],
|
||||
d_out=cfg["emb_dim"],
|
||||
context_length=cfg["context_length"],
|
||||
num_heads=cfg["n_heads"],
|
||||
dropout=cfg["drop_rate"],
|
||||
qkv_bias=cfg["qkv_bias"],
|
||||
window_size=cfg["kv_window_size"]) # NEW
|
||||
self.ff = FeedForward(cfg)
|
||||
self.norm1 = LayerNorm(cfg["emb_dim"])
|
||||
self.norm2 = LayerNorm(cfg["emb_dim"])
|
||||
self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
|
||||
|
||||
def forward(self, x, use_cache=False):
|
||||
# Shortcut connection for attention block
|
||||
shortcut = x
|
||||
x = self.norm1(x)
|
||||
|
||||
# x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
|
||||
####################################################
|
||||
# NEW
|
||||
x = self.att(x, use_cache=use_cache)
|
||||
####################################################
|
||||
|
||||
x = self.drop_shortcut(x)
|
||||
x = x + shortcut # Add the original input back
|
||||
|
||||
# Shortcut connection for feed-forward block
|
||||
shortcut = x
|
||||
x = self.norm2(x)
|
||||
x = self.ff(x)
|
||||
x = self.drop_shortcut(x)
|
||||
x = x + shortcut # Add the original input back
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class GPTModel(nn.Module):
|
||||
def __init__(self, cfg):
|
||||
super().__init__()
|
||||
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
|
||||
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
|
||||
self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
||||
|
||||
# self.trf_blocks = nn.Sequential(
|
||||
# *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
||||
####################################################
|
||||
# NEW
|
||||
self.trf_blocks = nn.ModuleList(
|
||||
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
||||
|
||||
self.current_pos = 0
|
||||
####################################################
|
||||
|
||||
self.final_norm = LayerNorm(cfg["emb_dim"])
|
||||
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
|
||||
|
||||
def forward(self, in_idx, use_cache=False):
|
||||
batch_size, seq_len = in_idx.shape
|
||||
tok_embeds = self.tok_emb(in_idx)
|
||||
|
||||
# pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
|
||||
|
||||
####################################################
|
||||
# NEW
|
||||
|
||||
if use_cache:
|
||||
pos_ids = torch.arange(self.current_pos, self.current_pos + seq_len, device=in_idx.device, dtype=torch.long)
|
||||
self.current_pos += seq_len
|
||||
else:
|
||||
pos_ids = torch.arange(0, seq_len, device=in_idx.device, dtype=torch.long)
|
||||
pos_embeds = self.pos_emb(pos_ids).unsqueeze(0)
|
||||
####################################################
|
||||
|
||||
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
|
||||
x = self.drop_emb(x)
|
||||
|
||||
# x = self.trf_blocks(x)
|
||||
####################################################
|
||||
# NEW
|
||||
for blk in self.trf_blocks:
|
||||
x = blk(x, use_cache=use_cache)
|
||||
####################################################
|
||||
|
||||
x = self.final_norm(x)
|
||||
logits = self.out_head(x)
|
||||
return logits
|
||||
|
||||
####################################################
|
||||
# NEW
|
||||
def reset_kv_cache(self):
|
||||
for blk in self.trf_blocks:
|
||||
blk.att.reset_cache()
|
||||
|
||||
####################################################
|
||||
|
||||
|
||||
def generate_text_simple(model, idx, max_new_tokens, context_size):
|
||||
# idx is (B, T) array of indices in the current context
|
||||
for _ in range(max_new_tokens):
|
||||
|
||||
# Crop current context if it exceeds the supported context size
|
||||
# E.g., if LLM supports only 5 tokens, and the context size is 10
|
||||
# then only the last 5 tokens are used as context
|
||||
idx_cond = idx[:, -context_size:]
|
||||
|
||||
# Get the predictions
|
||||
with torch.no_grad():
|
||||
logits = model(idx_cond)
|
||||
|
||||
# Focus only on the last time step
|
||||
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
# Get the idx of the vocab entry with the highest logits value
|
||||
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
|
||||
|
||||
# Append sampled index to the running sequence
|
||||
idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
|
||||
|
||||
return idx
|
||||
|
||||
|
||||
####################################################
|
||||
# NEW
|
||||
def generate_text_simple_cached(model, idx, max_new_tokens):
|
||||
model.eval()
|
||||
model.reset_kv_cache()
|
||||
|
||||
# Init cache with full prompt
|
||||
logits = model(idx, use_cache=True)
|
||||
|
||||
for _ in range(max_new_tokens):
|
||||
last_logits = logits[:, -1]
|
||||
next_idx = last_logits.argmax(dim=-1, keepdim=True)
|
||||
idx = torch.cat([idx, next_idx], dim=1)
|
||||
|
||||
logits = model(next_idx, use_cache=True)
|
||||
|
||||
return idx
|
||||
####################################################
|
||||
|
||||
|
||||
def main():
|
||||
GPT_CONFIG_124M = {
|
||||
"vocab_size": 50257, # Vocabulary size
|
||||
"context_length": 1024, # Context length
|
||||
"emb_dim": 768, # Embedding dimension
|
||||
"n_heads": 12, # Number of attention heads
|
||||
"n_layers": 12, # Number of layers
|
||||
"drop_rate": 0.1, # Dropout rate
|
||||
"qkv_bias": False, # Query-Key-Value bias
|
||||
"kv_window_size": 48 # NEW: KV cache window size
|
||||
}
|
||||
|
||||
torch.manual_seed(123)
|
||||
model = GPTModel(GPT_CONFIG_124M)
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model.to(device)
|
||||
model.eval() # disable dropout
|
||||
|
||||
start_context = "Hello, I am"
|
||||
|
||||
tokenizer = tiktoken.get_encoding("gpt2")
|
||||
encoded = tokenizer.encode(start_context)
|
||||
encoded_tensor = torch.tensor(encoded, device=device).unsqueeze(0)
|
||||
|
||||
print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}")
|
||||
print("\nInput text:", start_context)
|
||||
print("Encoded input text:", encoded)
|
||||
print("encoded_tensor.shape:", encoded_tensor.shape)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
start = time.time()
|
||||
|
||||
# token_ids = generate_text_simple(
|
||||
# model=model,
|
||||
# idx=encoded_tensor,
|
||||
# max_new_tokens=200,
|
||||
# context_size=GPT_CONFIG_124M["context_length"]
|
||||
# )
|
||||
|
||||
####################################################
|
||||
# NEW
|
||||
token_ids = generate_text_simple_cached(
|
||||
model=model,
|
||||
idx=encoded_tensor,
|
||||
max_new_tokens=200,
|
||||
)
|
||||
####################################################
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
total_time = time.time() - start
|
||||
|
||||
decoded_text = tokenizer.decode(token_ids.squeeze(0).tolist())
|
||||
|
||||
print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}")
|
||||
print("\nOutput:", token_ids)
|
||||
print("Output length:", len(token_ids[0]))
|
||||
print("Output text:", decoded_text)
|
||||
|
||||
print(f"\nTime: {total_time:.2f} sec")
|
||||
print(f"{int(len(token_ids[0])/total_time)} tokens/sec")
|
||||
if torch.cuda.is_available():
|
||||
max_mem_bytes = torch.cuda.max_memory_allocated()
|
||||
max_mem_gb = max_mem_bytes / (1024 ** 3)
|
||||
print(f"Max memory allocated: {max_mem_gb:.2f} GB")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
x
Reference in New Issue
Block a user