Make datesets and loaders compatible with multiprocessing (#118)

This commit is contained in:
Sebastian Raschka 2024-04-13 14:57:56 -04:00 committed by GitHub
parent 8fe63a9a0e
commit bae4b0fb08
17 changed files with 140 additions and 116 deletions

3
.gitignore vendored
View File

@ -14,7 +14,8 @@ ch05/01_main-chapter-code/model.pth
ch05/01_main-chapter-code/model_and_optimizer.pth
ch05/03_bonus_pretraining_on_gutenberg/model_checkpoints
# Preprocessing output folders
# Datasets
ch05/03_bonus_pretraining_on_gutenberg/gutenberg
ch05/03_bonus_pretraining_on_gutenberg/gutenberg_preprocessed
# Temporary OS-related files

View File

@ -47,7 +47,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"torch version: 2.2.1\n"
"torch version: 2.2.2\n"
]
}
],
@ -130,7 +130,8 @@
" max_length=GPT_CONFIG_124M[\"context_length\"],\n",
" stride=GPT_CONFIG_124M[\"context_length\"],\n",
" drop_last=True,\n",
" shuffle=True\n",
" shuffle=True,\n",
" num_workers=0\n",
")\n",
"\n",
"val_loader = create_dataloader_v1(\n",
@ -139,7 +140,8 @@
" max_length=GPT_CONFIG_124M[\"context_length\"],\n",
" stride=GPT_CONFIG_124M[\"context_length\"],\n",
" drop_last=False,\n",
" shuffle=False\n",
" shuffle=False,\n",
" num_workers=0\n",
")"
]
},
@ -500,7 +502,7 @@
"\n",
"\n",
"def train_model(model, train_loader, val_loader, optimizer, device, n_epochs,\n",
" eval_freq, eval_iter, start_context, warmup_steps=10,\n",
" eval_freq, eval_iter, start_context, tokenizer, warmup_steps=10,\n",
" initial_lr=3e-05, min_lr=1e-6):\n",
"\n",
" train_losses, val_losses, track_tokens_seen, track_lrs = [], [], [], []\n",
@ -562,8 +564,7 @@
"\n",
" # Generate and print a sample from the model to monitor progress\n",
" generate_and_print_sample(\n",
" model, train_loader.dataset.tokenizer,\n",
" device, start_context\n",
" model, tokenizer, device, start_context\n",
" )\n",
"\n",
" return train_losses, val_losses, track_tokens_seen, track_lrs"
@ -625,18 +626,21 @@
}
],
"source": [
"import tiktoken\n",
"\n",
"torch.manual_seed(123)\n",
"model = GPTModel(GPT_CONFIG_124M)\n",
"model.to(device)\n",
"\n",
"peak_lr = 5e-4\n",
"optimizer = torch.optim.AdamW(model.parameters(), weight_decay=0.1)\n",
"tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
"\n",
"n_epochs = 15\n",
"train_losses, val_losses, tokens_seen, lrs = train_model(\n",
" model, train_loader, val_loader, optimizer, device, n_epochs=n_epochs,\n",
" eval_freq=5, eval_iter=1, start_context=\"Every effort moves you\",\n",
" warmup_steps=10, initial_lr=1e-5, min_lr=1e-5\n",
" tokenizer=tokenizer, warmup_steps=10, initial_lr=1e-5, min_lr=1e-5\n",
")"
]
},
@ -705,7 +709,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/jg/tpqyh1fd5js5wsr1d138k3n40000gn/T/ipykernel_34986/3589549395.py:5: UserWarning: The figure layout has changed to tight\n",
"/var/folders/jg/tpqyh1fd5js5wsr1d138k3n40000gn/T/ipykernel_9436/3589549395.py:5: UserWarning: The figure layout has changed to tight\n",
" plt.tight_layout(); plt.savefig(\"3.pdf\")\n"
]
},
@ -755,7 +759,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@ -20,12 +20,11 @@ import matplotlib.pyplot as plt
class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
self.input_ids = []
self.target_ids = []
# Tokenize the entire text
token_ids = self.tokenizer.encode(txt)
token_ids = tokenizer.encode(txt)
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):
@ -42,7 +41,7 @@ class GPTDatasetV1(Dataset):
def create_dataloader_v1(txt, batch_size=4, max_length=256,
stride=128, shuffle=True, drop_last=True):
stride=128, shuffle=True, drop_last=True, num_workers=0):
# Initialize the tokenizer
tokenizer = tiktoken.get_encoding("gpt2")
@ -51,7 +50,7 @@ def create_dataloader_v1(txt, batch_size=4, max_length=256,
# Create dataloader
dataloader = DataLoader(
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=0)
return dataloader

View File

@ -37,7 +37,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"torch version: 2.2.1\n",
"torch version: 2.2.2\n",
"tiktoken version: 0.5.1\n"
]
}
@ -724,7 +724,7 @@
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[16], line 5\u001b[0m\n\u001b[1;32m 1\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m SimpleTokenizerV1(vocab)\n\u001b[1;32m 3\u001b[0m text \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHello, do you like tea. Is this-- a test?\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m----> 5\u001b[0m \u001b[43mtokenizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencode\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtext\u001b[49m\u001b[43m)\u001b[49m\n",
"Cell \u001b[0;32mIn[12], line 9\u001b[0m, in \u001b[0;36mSimpleTokenizerV1.encode\u001b[0;34m(self, text)\u001b[0m\n\u001b[1;32m 7\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m re\u001b[38;5;241m.\u001b[39msplit(\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m([,.?_!\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m()\u001b[39m\u001b[38;5;130;01m\\'\u001b[39;00m\u001b[38;5;124m]|--|\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124ms)\u001b[39m\u001b[38;5;124m'\u001b[39m, text)\n\u001b[1;32m 8\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m [item\u001b[38;5;241m.\u001b[39mstrip() \u001b[38;5;28;01mfor\u001b[39;00m item \u001b[38;5;129;01min\u001b[39;00m preprocessed \u001b[38;5;28;01mif\u001b[39;00m item\u001b[38;5;241m.\u001b[39mstrip()]\n\u001b[0;32m----> 9\u001b[0m ids \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstr_to_int[s] \u001b[38;5;28;01mfor\u001b[39;00m s \u001b[38;5;129;01min\u001b[39;00m preprocessed]\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ids\n",
"Cell \u001b[0;32mIn[12], line 9\u001b[0m, in \u001b[0;36mSimpleTokenizerV1.encode\u001b[0;34m(self, text)\u001b[0m\n\u001b[1;32m 7\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m re\u001b[38;5;241m.\u001b[39msplit(\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m([,.?_!\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m()\u001b[39m\u001b[38;5;130;01m\\'\u001b[39;00m\u001b[38;5;124m]|--|\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124ms)\u001b[39m\u001b[38;5;124m'\u001b[39m, text)\n\u001b[1;32m 8\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m [item\u001b[38;5;241m.\u001b[39mstrip() \u001b[38;5;28;01mfor\u001b[39;00m item \u001b[38;5;129;01min\u001b[39;00m preprocessed \u001b[38;5;28;01mif\u001b[39;00m item\u001b[38;5;241m.\u001b[39mstrip()]\n\u001b[0;32m----> 9\u001b[0m ids \u001b[38;5;241m=\u001b[39m \u001b[43m[\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstr_to_int\u001b[49m\u001b[43m[\u001b[49m\u001b[43ms\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ms\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mpreprocessed\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ids\n",
"Cell \u001b[0;32mIn[12], line 9\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 7\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m re\u001b[38;5;241m.\u001b[39msplit(\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m([,.?_!\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m()\u001b[39m\u001b[38;5;130;01m\\'\u001b[39;00m\u001b[38;5;124m]|--|\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124ms)\u001b[39m\u001b[38;5;124m'\u001b[39m, text)\n\u001b[1;32m 8\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m [item\u001b[38;5;241m.\u001b[39mstrip() \u001b[38;5;28;01mfor\u001b[39;00m item \u001b[38;5;129;01min\u001b[39;00m preprocessed \u001b[38;5;28;01mif\u001b[39;00m item\u001b[38;5;241m.\u001b[39mstrip()]\n\u001b[0;32m----> 9\u001b[0m ids \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstr_to_int\u001b[49m\u001b[43m[\u001b[49m\u001b[43ms\u001b[49m\u001b[43m]\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m s \u001b[38;5;129;01min\u001b[39;00m preprocessed]\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ids\n",
"\u001b[0;31mKeyError\u001b[0m: 'Hello'"
]
@ -957,7 +957,7 @@
},
{
"cell_type": "code",
"execution_count": 28,
"execution_count": 24,
"id": "ede1d41f-934b-4bf4-8184-54394a257a94",
"metadata": {},
"outputs": [],
@ -967,7 +967,7 @@
},
{
"cell_type": "code",
"execution_count": 29,
"execution_count": 25,
"id": "48967a77-7d17-42bf-9e92-fc619d63a59e",
"metadata": {},
"outputs": [
@ -988,7 +988,7 @@
},
{
"cell_type": "code",
"execution_count": 30,
"execution_count": 26,
"id": "6ad3312f-a5f7-4efc-9d7d-8ea09d7b5128",
"metadata": {},
"outputs": [],
@ -998,7 +998,7 @@
},
{
"cell_type": "code",
"execution_count": 31,
"execution_count": 27,
"id": "5ff2cd85-7cfb-4325-b390-219938589428",
"metadata": {},
"outputs": [
@ -1020,7 +1020,7 @@
},
{
"cell_type": "code",
"execution_count": 32,
"execution_count": 28,
"id": "d26a48bb-f82e-41a8-a955-a1c9cf9d50ab",
"metadata": {},
"outputs": [
@ -1080,7 +1080,7 @@
},
{
"cell_type": "code",
"execution_count": 33,
"execution_count": 29,
"id": "848d5ade-fd1f-46c3-9e31-1426e315c71b",
"metadata": {},
"outputs": [
@ -1111,7 +1111,7 @@
},
{
"cell_type": "code",
"execution_count": 34,
"execution_count": 30,
"id": "e84424a7-646d-45b6-99e3-80d15fb761f2",
"metadata": {},
"outputs": [],
@ -1121,7 +1121,7 @@
},
{
"cell_type": "code",
"execution_count": 35,
"execution_count": 31,
"id": "dfbff852-a92f-48c8-a46d-143a0f109f40",
"metadata": {},
"outputs": [
@ -1154,7 +1154,7 @@
},
{
"cell_type": "code",
"execution_count": 36,
"execution_count": 32,
"id": "d97b031e-ed55-409d-95f2-aeb38c6fe366",
"metadata": {},
"outputs": [
@ -1179,7 +1179,7 @@
},
{
"cell_type": "code",
"execution_count": 37,
"execution_count": 33,
"id": "f57bd746-dcbf-4433-8e24-ee213a8c34a1",
"metadata": {},
"outputs": [
@ -1221,7 +1221,7 @@
},
{
"cell_type": "code",
"execution_count": 38,
"execution_count": 34,
"id": "e1770134-e7f3-4725-a679-e04c3be48cac",
"metadata": {},
"outputs": [
@ -1229,7 +1229,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"PyTorch version: 2.1.0\n"
"PyTorch version: 2.2.2\n"
]
}
],
@ -1258,7 +1258,7 @@
},
{
"cell_type": "code",
"execution_count": 39,
"execution_count": 35,
"id": "74b41073-4c9f-46e2-a1bd-d38e4122b375",
"metadata": {},
"outputs": [],
@ -1268,12 +1268,11 @@
"\n",
"class GPTDatasetV1(Dataset):\n",
" def __init__(self, txt, tokenizer, max_length, stride):\n",
" self.tokenizer = tokenizer\n",
" self.input_ids = []\n",
" self.target_ids = []\n",
"\n",
" # Tokenize the entire text\n",
" token_ids = self.tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
" token_ids = tokenizer.encode(txt, allowed_special={\"<|endoftext|>\"})\n",
"\n",
" # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
" for i in range(0, len(token_ids) - max_length, stride):\n",
@ -1291,12 +1290,12 @@
},
{
"cell_type": "code",
"execution_count": 40,
"execution_count": 36,
"id": "5eb30ebe-97b3-43c5-9ff1-a97d621b3c4e",
"metadata": {},
"outputs": [],
"source": [
"def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True):\n",
"def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True, num_workers=0):\n",
"\n",
" # Initialize the tokenizer\n",
" tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
@ -1306,7 +1305,12 @@
"\n",
" # Create dataloader\n",
" dataloader = DataLoader(\n",
" dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)\n",
" dataset,\n",
" batch_size=batch_size,\n",
" shuffle=shuffle,\n",
" drop_last=drop_last,\n",
" num_workers=0\n",
" )\n",
"\n",
" return dataloader"
]
@ -1321,7 +1325,7 @@
},
{
"cell_type": "code",
"execution_count": 41,
"execution_count": 37,
"id": "df31d96c-6bfd-4564-a956-6192242d7579",
"metadata": {},
"outputs": [],
@ -1332,7 +1336,7 @@
},
{
"cell_type": "code",
"execution_count": 42,
"execution_count": 38,
"id": "9226d00c-ad9a-4949-a6e4-9afccfc7214f",
"metadata": {},
"outputs": [
@ -1354,7 +1358,7 @@
},
{
"cell_type": "code",
"execution_count": 43,
"execution_count": 39,
"id": "10deb4bc-4de1-4d20-921e-4b1c7a0e1a6d",
"metadata": {},
"outputs": [
@ -1398,7 +1402,7 @@
},
{
"cell_type": "code",
"execution_count": 44,
"execution_count": 40,
"id": "1916e7a6-f03d-4f09-91a6-d0bdbac5a58c",
"metadata": {},
"outputs": [
@ -1473,7 +1477,7 @@
},
{
"cell_type": "code",
"execution_count": 46,
"execution_count": 41,
"id": "15a6304c-9474-4470-b85d-3991a49fa653",
"metadata": {},
"outputs": [],
@ -1491,7 +1495,7 @@
},
{
"cell_type": "code",
"execution_count": 47,
"execution_count": 42,
"id": "93cb2cee-9aa6-4bb8-8977-c65661d16eda",
"metadata": {},
"outputs": [],
@ -1513,7 +1517,7 @@
},
{
"cell_type": "code",
"execution_count": 49,
"execution_count": 43,
"id": "a686eb61-e737-4351-8f1c-222913d47468",
"metadata": {},
"outputs": [
@ -1554,7 +1558,7 @@
},
{
"cell_type": "code",
"execution_count": 50,
"execution_count": 44,
"id": "e43600ba-f287-4746-8ddf-d0f71a9023ca",
"metadata": {},
"outputs": [
@ -1581,7 +1585,7 @@
},
{
"cell_type": "code",
"execution_count": 51,
"execution_count": 45,
"id": "50280ead-0363-44c8-8c35-bb885d92c8b7",
"metadata": {},
"outputs": [
@ -1874,7 +1878,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@ -31,7 +31,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"id": "0ed4b7db-3b47-4fd3-a4a6-5f4ed5dd166e",
"metadata": {},
"outputs": [],
@ -43,12 +43,11 @@
"\n",
"class GPTDatasetV1(Dataset):\n",
" def __init__(self, txt, tokenizer, max_length, stride):\n",
" self.tokenizer = tokenizer\n",
" self.input_ids = []\n",
" self.target_ids = []\n",
"\n",
" # Tokenize the entire text\n",
" token_ids = self.tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n",
" token_ids = tokenizer.encode(txt, allowed_special={\"<|endoftext|>\"})\n",
"\n",
" # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
" for i in range(0, len(token_ids) - max_length, stride):\n",
@ -65,7 +64,7 @@
"\n",
"\n",
"def create_dataloader_v1(txt, batch_size=4, max_length=256, \n",
" stride=128, shuffle=True, drop_last=True):\n",
" stride=128, shuffle=True, drop_last=True, num_workers=0):\n",
" # Initialize the tokenizer\n",
" tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
"\n",
@ -74,7 +73,7 @@
"\n",
" # Create dataloader\n",
" dataloader = DataLoader(\n",
" dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)\n",
" dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=0)\n",
"\n",
" return dataloader\n",
"\n",
@ -99,7 +98,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"id": "664397bc-6daa-4b88-90aa-e8fc1fbd5846",
"metadata": {},
"outputs": [],
@ -117,7 +116,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "d3664332-e6bb-447e-8b96-203aafde8b24",
"metadata": {},
"outputs": [
@ -150,7 +149,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@ -13,13 +13,12 @@ from torch.utils.data import Dataset, DataLoader
class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
def __init__(self, txt, tokenizer, max_length, stride, num_workers=0):
self.input_ids = []
self.target_ids = []
# Tokenize the entire text
token_ids = self.tokenizer.encode(txt)
token_ids = tokenizer.encode(txt)
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):
@ -36,7 +35,7 @@ class GPTDatasetV1(Dataset):
def create_dataloader_v1(txt, batch_size=4, max_length=256,
stride=128, shuffle=True, drop_last=True):
stride=128, shuffle=True, drop_last=True, num_workers=0):
# Initialize the tokenizer
tokenizer = tiktoken.get_encoding("gpt2")

View File

@ -11,7 +11,6 @@ from torch.utils.data import Dataset, DataLoader
class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
self.input_ids = []
self.target_ids = []
@ -33,7 +32,7 @@ class GPTDatasetV1(Dataset):
def create_dataloader_v1(txt, batch_size=4, max_length=256,
stride=128, shuffle=True, drop_last=True):
stride=128, shuffle=True, drop_last=True, num_workers=0):
# Initialize the tokenizer
tokenizer = tiktoken.get_encoding("gpt2")
@ -42,7 +41,7 @@ def create_dataloader_v1(txt, batch_size=4, max_length=256,
# Create dataloader
dataloader = DataLoader(
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=0)
return dataloader

0
ch05/01_main-chapter-code/.gitignore vendored Normal file
View File

File diff suppressed because one or more lines are too long

View File

@ -473,7 +473,8 @@
" max_length=GPT_CONFIG_124M[\"context_length\"],\n",
" stride=GPT_CONFIG_124M[\"context_length\"],\n",
" drop_last=True,\n",
" shuffle=True\n",
" shuffle=True,\n",
" num_workers=0\n",
")\n",
"\n",
"val_loader = create_dataloader_v1(\n",
@ -482,7 +483,8 @@
" max_length=GPT_CONFIG_124M[\"context_length\"],\n",
" stride=GPT_CONFIG_124M[\"context_length\"],\n",
" drop_last=False,\n",
" shuffle=False\n",
" shuffle=False,\n",
" num_workers=0\n",
")"
]
},
@ -697,7 +699,8 @@
" max_length=GPT_CONFIG_124M[\"context_length\"],\n",
" stride=GPT_CONFIG_124M[\"context_length\"],\n",
" drop_last=True,\n",
" shuffle=True\n",
" shuffle=True,\n",
" num_workers=0\n",
")\n",
"\n",
"val_loader = create_dataloader_v1(\n",
@ -706,7 +709,8 @@
" max_length=GPT_CONFIG_124M[\"context_length\"],\n",
" stride=GPT_CONFIG_124M[\"context_length\"],\n",
" drop_last=False,\n",
" shuffle=False\n",
" shuffle=False,\n",
" num_workers=0\n",
")"
]
},
@ -945,7 +949,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.11.4"
}
},
"nbformat": 4,

View File

@ -7,6 +7,8 @@ import matplotlib.pyplot as plt
import os
import torch
import urllib.request
import tiktoken
# Import from local files
from previous_chapters import GPTModel, create_dataloader_v1, generate_text_simple
@ -69,7 +71,7 @@ def generate_and_print_sample(model, tokenizer, device, start_context):
def train_model_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
eval_freq, eval_iter, start_context):
eval_freq, eval_iter, start_context, tokenizer):
# Initialize lists to track losses and tokens seen
train_losses, val_losses, track_tokens_seen = [], [], []
tokens_seen = 0
@ -99,7 +101,7 @@ def train_model_simple(model, train_loader, val_loader, optimizer, device, num_e
# Print a sample text after each epoch
generate_and_print_sample(
model, train_loader.dataset.tokenizer, device, start_context
model, tokenizer, device, start_context
)
return train_losses, val_losses, track_tokens_seen
@ -169,7 +171,8 @@ def main(gpt_config, settings):
max_length=gpt_config["context_length"],
stride=gpt_config["context_length"],
drop_last=True,
shuffle=True
shuffle=True,
num_workers=0
)
val_loader = create_dataloader_v1(
@ -178,17 +181,20 @@ def main(gpt_config, settings):
max_length=gpt_config["context_length"],
stride=gpt_config["context_length"],
drop_last=False,
shuffle=False
shuffle=False,
num_workers=0
)
##############################
# Train model
##############################
tokenizer = tiktoken.get_encoding("gpt2")
train_losses, val_losses, tokens_seen = train_model_simple(
model, train_loader, val_loader, optimizer, device,
num_epochs=settings["num_epochs"], eval_freq=5, eval_iter=1,
start_context="Every effort moves you",
start_context="Every effort moves you", tokenizer=tokenizer
)
return train_losses, val_losses, tokens_seen, model

View File

@ -14,12 +14,11 @@ from torch.utils.data import Dataset, DataLoader
class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
self.input_ids = []
self.target_ids = []
# Tokenize the entire text
token_ids = self.tokenizer.encode(txt)
token_ids = tokenizer.encode(txt)
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):
@ -36,7 +35,7 @@ class GPTDatasetV1(Dataset):
def create_dataloader_v1(txt, batch_size=4, max_length=256,
stride=128, shuffle=True, drop_last=True):
stride=128, shuffle=True, drop_last=True, num_workers=0):
# Initialize the tokenizer
tokenizer = tiktoken.get_encoding("gpt2")
@ -45,7 +44,7 @@ def create_dataloader_v1(txt, batch_size=4, max_length=256,
# Create dataloader
dataloader = DataLoader(
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=0)
return dataloader

View File

@ -14,12 +14,11 @@ from torch.utils.data import Dataset, DataLoader
class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
self.input_ids = []
self.target_ids = []
# Tokenize the entire text
token_ids = self.tokenizer.encode(txt)
token_ids = tokenizer.encode(txt)
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):
@ -36,7 +35,7 @@ class GPTDatasetV1(Dataset):
def create_dataloader_v1(txt, batch_size=4, max_length=256,
stride=128, shuffle=True, drop_last=True):
stride=128, shuffle=True, drop_last=True, num_workers=0):
# Initialize the tokenizer
tokenizer = tiktoken.get_encoding("gpt2")
@ -45,7 +44,7 @@ def create_dataloader_v1(txt, batch_size=4, max_length=256,
# Create dataloader
dataloader = DataLoader(
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=0)
return dataloader

View File

@ -15,6 +15,7 @@ import argparse
import os
from pathlib import Path
import time
import tiktoken
import torch
from previous_chapters import (
create_dataloader_v1,
@ -32,7 +33,7 @@ def read_text_file(file_path):
return text_data
def create_dataloaders(text_data, train_ratio, batch_size, max_length, stride):
def create_dataloaders(text_data, train_ratio, batch_size, max_length, stride, num_workers=0):
split_idx = int(train_ratio * len(text_data))
train_loader = create_dataloader_v1(
text_data[:split_idx],
@ -40,7 +41,8 @@ def create_dataloaders(text_data, train_ratio, batch_size, max_length, stride):
max_length=max_length,
stride=stride,
drop_last=True,
shuffle=True
shuffle=True,
num_workers=num_workers
)
val_loader = create_dataloader_v1(
text_data[split_idx:],
@ -48,7 +50,8 @@ def create_dataloaders(text_data, train_ratio, batch_size, max_length, stride):
max_length=max_length,
stride=stride,
drop_last=False,
shuffle=False
shuffle=False,
num_workers=num_workers
)
return train_loader, val_loader
@ -78,7 +81,7 @@ def print_eta(start_time, book_start_time, index, total_files):
def train_model_simple(model, optimizer, device, n_epochs,
eval_freq, eval_iter, print_sample_iter, start_context,
output_dir, save_ckpt_freq,
output_dir, save_ckpt_freq, tokenizer,
batch_size=1024, train_ratio=0.90):
train_losses, val_losses, track_tokens_seen = [], [], []
@ -101,7 +104,8 @@ def train_model_simple(model, optimizer, device, n_epochs,
train_ratio=train_ratio,
batch_size=batch_size,
max_length=GPT_CONFIG_124M["context_length"],
stride=GPT_CONFIG_124M["context_length"]
stride=GPT_CONFIG_124M["context_length"],
num_workers=0
)
print("Training ...")
model.train()
@ -126,7 +130,7 @@ def train_model_simple(model, optimizer, device, n_epochs,
# Generate text passage
if global_step % print_sample_iter == 0:
generate_and_print_sample(
model, train_loader.dataset.tokenizer, device, start_context
model, tokenizer, device, start_context
)
if global_step % save_ckpt_freq:
@ -196,6 +200,7 @@ if __name__ == "__main__":
model = GPTModel(GPT_CONFIG_124M)
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=0.1)
tokenizer = tiktoken.get_encoding("gpt2")
data_dir = args.data_dir
all_files = [os.path.join(path, name) for path, subdirs, files
@ -221,6 +226,7 @@ if __name__ == "__main__":
output_dir=output_dir,
save_ckpt_freq=args.save_ckpt_freq,
start_context="Every effort moves you",
tokenizer=tokenizer
)
epochs_tensor = torch.linspace(0, args.n_epochs, len(train_losses))

View File

@ -21,11 +21,10 @@ import matplotlib.pyplot as plt
class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
self.input_ids = []
self.target_ids = []
token_ids = self.tokenizer.encode(txt, allowed_special={'<|endoftext|>'})
token_ids = tokenizer.encode(txt, allowed_special={'<|endoftext|>'})
for i in range(0, len(token_ids) - max_length, stride):
input_chunk = token_ids[i:i + max_length]
@ -41,11 +40,11 @@ class GPTDatasetV1(Dataset):
def create_dataloader_v1(txt, batch_size=4, max_length=256,
stride=128, shuffle=True, drop_last=True):
stride=128, shuffle=True, drop_last=True, num_workers=0):
tokenizer = tiktoken.get_encoding("gpt2")
dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
dataloader = DataLoader(
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=0)
return dataloader

View File

@ -6,6 +6,7 @@
import itertools
import math
import os
import tiktoken
import torch
from previous_chapters import GPTModel, create_dataloader_v1
@ -58,7 +59,7 @@ def evaluate_model(model, train_loader, val_loader, device, eval_iter):
def train_model(model, train_loader, val_loader, optimizer, device,
n_epochs, eval_freq, eval_iter,
encoded_start_context, warmup_iters=10,
encoded_start_context, tokenizer, warmup_iters=10,
initial_lr=3e-05, min_lr=1e-6):
global_step = 0
@ -120,6 +121,7 @@ if __name__ == "__main__":
with open(os.path.join(script_dir, "the-verdict.txt"), "r", encoding="utf-8") as file:
text_data = file.read()
tokenizer = tiktoken.get_encoding("gpt2")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_ratio = 0.95
@ -155,7 +157,8 @@ if __name__ == "__main__":
max_length=GPT_CONFIG_124M["context_length"],
stride=GPT_CONFIG_124M["context_length"],
drop_last=True,
shuffle=True
shuffle=True,
num_workers=0
)
val_loader = create_dataloader_v1(
@ -164,7 +167,8 @@ if __name__ == "__main__":
max_length=GPT_CONFIG_124M["context_length"],
stride=GPT_CONFIG_124M["context_length"],
drop_last=False,
shuffle=False
shuffle=False,
num_workers=0
)
model = GPTModel(GPT_CONFIG_124M)
@ -176,7 +180,7 @@ if __name__ == "__main__":
weight_decay=HPARAM_CONFIG["weight_decay"]
)
encoded_start_context = train_loader.dataset.tokenizer.encode("Nevertheless")
encoded_start_context = tokenizer.encode("Nevertheless")
encoded_tensor = torch.tensor(encoded_start_context).unsqueeze(0)
train_loss, val_loss = train_model(
@ -184,6 +188,7 @@ if __name__ == "__main__":
n_epochs=HPARAM_CONFIG["n_epochs"],
eval_freq=5, eval_iter=1,
encoded_start_context=encoded_tensor,
tokenizer=tokenizer,
warmup_iters=HPARAM_CONFIG["warmup_iters"],
initial_lr=HPARAM_CONFIG["initial_lr"],
min_lr=HPARAM_CONFIG["min_lr"]

View File

@ -19,12 +19,11 @@ from torch.utils.data import Dataset, DataLoader
class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
self.input_ids = []
self.target_ids = []
# Tokenize the entire text
token_ids = self.tokenizer.encode(txt)
token_ids = tokenizer.encode(txt)
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):
@ -46,11 +45,11 @@ def create_dataloader_v1(txt, batch_size=4, max_length=256,
tokenizer = tiktoken.get_encoding("gpt2")
# Create dataset
dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
dataset = GPTDatasetV1(txt, tokenizer, max_length, stride, num_workers=0)
# Create dataloader
dataloader = DataLoader(
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=0)
return dataloader