Update DDP-script.py

Fix for-loop
This commit is contained in:
Sebastian Raschka 2024-03-01 18:31:05 -06:00 committed by GitHub
parent c9dccb0c40
commit c071ea73f9

View File

@ -117,25 +117,25 @@ def main(rank, world_size, num_epochs):
model = DDP(model, device_ids=[rank]) # NEW: wrap model with DDP
# the core model is now accessible as model.module
for epoch in range(num_epochs):
model.train()
for features, labels in enumerate(train_loader):
for features, labels in train_loader:
features, labels = features.to(rank), labels.to(rank) # New: use rank
logits = model(features)
loss = F.cross_entropy(logits, labels) # Loss function
optimizer.zero_grad()
loss.backward()
optimizer.step()
### LOGGING
print(f"[GPU{rank}] Epoch: {epoch+1:03d}/{num_epochs:03d}"
f" | Batchsize {labels.shape[0]:03d}"
f" | Train/Val Loss: {loss:.2f}")
model.eval()
train_acc = compute_accuracy(model, train_loader, device=rank)
print(f"[GPU{rank}] Training accuracy", train_acc)
@ -175,4 +175,3 @@ if __name__ == "__main__":
world_size = torch.cuda.device_count()
mp.spawn(main, args=(world_size, num_epochs), nprocs=world_size)
# nprocs=world_size spawns one process per GPU