diff --git a/ch04/02_performance-analysis/flops-analysis.ipynb b/ch04/02_performance-analysis/flops-analysis.ipynb
index ac1b8ca..b8f960c 100644
--- a/ch04/02_performance-analysis/flops-analysis.ipynb
+++ b/ch04/02_performance-analysis/flops-analysis.ipynb
@@ -1,507 +1,558 @@
{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "
\n",
- "\n",
- "\n",
- "\n",
- "Supplementary code for the Build a Large Language Model From Scratch book by Sebastian Raschka \n",
- " Code repository: https://github.com/rasbt/LLMs-from-scratch\n",
- "\n",
- " | \n",
- "\n",
- " \n",
- " | \n",
- "
\n",
- "
"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## FLOPS Analysis"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "- FLOPs (Floating Point Operations Per Second) measure the computational complexity of neural network models by counting the number of floating-point operations executed\n",
- "- High FLOPs indicate more intensive computation and energy consumption"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "# pip install -r requirements-extra.txt"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "thop version: 0.1.1-2209072238\n",
- "torch version: 2.2.1+cu121\n"
- ]
- }
- ],
- "source": [
- "from importlib.metadata import version\n",
- "\n",
- "pkgs = [\n",
- " \"thop\",\n",
- " \"torch\",\n",
- "]\n",
- "for p in pkgs:\n",
- " print(f\"{p} version: {version(p)}\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- " \n",
- "# Simple benchmark with fixed batch size"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "FtQYMbLvgzO-"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Supplementary code for the Build a Large Language Model From Scratch book by Sebastian Raschka \n",
+ " Code repository: https://github.com/rasbt/LLMs-from-scratch\n",
+ "\n",
+ " | \n",
+ "\n",
+ " \n",
+ " | \n",
+ "
\n",
+ "
"
+ ]
},
- "id": "GerIdRMXd6g9",
- "outputId": "ccdd5c71-d221-4a84-f9bc-09557e77162d"
- },
- "outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "gpt-small (124M) : 5.1e+11 FLOPS\n",
- "gpt-medium (355M) : 1.4e+12 FLOPS\n",
- "gpt-large (774M) : 3.2e+12 FLOPS\n",
- "gpt-xl (1558M) : 6.4e+12 FLOPS\n"
- ]
- }
- ],
- "source": [
- "import torch\n",
- "from thop import profile\n",
- "\n",
- "from previous_chapters import GPTModel\n",
- "\n",
- "\n",
- "BASE_CONFIG = {\n",
- " \"vocab_size\": 50257, # Vocabulary size\n",
- " \"context_length\": 1024, # Context length\n",
- " \"drop_rate\": 0.0, # Dropout rate\n",
- " \"qkv_bias\": True # Query-key-value bias\n",
- "}\n",
- "\n",
- "model_configs = {\n",
- " \"gpt-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
- " \"gpt-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
- " \"gpt-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
- " \"gpt-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
- "}\n",
- "\n",
- "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
- "batch_size = 2\n",
- "input_tensor = torch.randint(0, 50257, (batch_size, 1024)).to(device)\n",
- "\n",
- "for size in model_configs:\n",
- " BASE_CONFIG.update(model_configs[size])\n",
- " \n",
- " model = GPTModel(BASE_CONFIG).bfloat16()\n",
- " model.to(device)\n",
- "\n",
- " # MACS = multiply-accumulate operations\n",
- " # MACS are typically counted as two FLOPS (one multiply and one accumulate)\n",
- " macs, params = profile(model, inputs=(input_tensor,), verbose=False)\n",
- " flops = 2*macs\n",
- " print(f\"{size:18}: {flops:.1e} FLOPS\")\n",
- " \n",
- " del model\n",
- " torch.cuda.empty_cache()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- " \n",
- "# Simple benchmark with automatic batch size finding"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "EbrESHKtgzPA"
+ },
+ "source": [
+ "# FLOPS Analysis"
+ ]
+ },
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "Processing gpt-small (124M)\n",
- " Batch size 128: 3.2e+13 FLOPS\n",
- " Batch size 160: 4.0e+13 FLOPS\n",
- " Batch size 176: 4.5e+13 FLOPS\n",
- " Batch size 184: 4.7e+13 FLOPS\n",
- " Batch size 186: 4.7e+13 FLOPS\n",
- "\n",
- "Processing gpt-medium (355M)\n",
- " Batch size 128: 9.3e+13 FLOPS\n",
- " Batch size 136: 9.8e+13 FLOPS\n",
- " Batch size 140: 1.0e+14 FLOPS\n",
- " Batch size 142: 1.0e+14 FLOPS\n",
- " Batch size 143: 1.0e+14 FLOPS\n",
- "\n",
- "Processing gpt-large (774M)\n",
- " Batch size 128: 2.0e+14 FLOPS\n",
- "\n",
- "Processing gpt-xl (1558M)\n",
- " Batch size 64: 2.0e+14 FLOPS\n",
- " Batch size 96: 3.1e+14 FLOPS\n"
- ]
- }
- ],
- "source": [
- "for size in model_configs:\n",
- " print(f\"\\nProcessing {size}\")\n",
- " config = BASE_CONFIG.copy()\n",
- " config.update(model_configs[size])\n",
- "\n",
- " min_batch_size = 1\n",
- " max_batch_size = None\n",
- " max_possible_batch_size = 4096\n",
- "\n",
- " while min_batch_size <= max_possible_batch_size:\n",
- " batch_size = (min_batch_size + max_possible_batch_size) // 2\n",
- " try:\n",
- " input_tensor = torch.randint(\n",
- " 0, config[\"vocab_size\"],\n",
- " (batch_size, config[\"context_length\"]),\n",
- " device=device\n",
- " )\n",
- "\n",
- " model = GPTModel(config).bfloat16().to(device)\n",
- "\n",
- " # MACS = multiply-accumulate operations\n",
- " # MACS are typically counted as two FLOPS (one multiply and one accumulate)\n",
- " macs, params = profile(model, inputs=(input_tensor,), verbose=False)\n",
- " flops = 2 * macs\n",
- " print(f\" Batch size {batch_size}: {flops:.1e} FLOPS\")\n",
- "\n",
- " # If successful, try a larger batch size\n",
- " min_batch_size = batch_size + 1\n",
- " max_batch_size = batch_size\n",
- "\n",
- " # Clean up\n",
- " del model, input_tensor\n",
- " torch.cuda.empty_cache()\n",
- "\n",
- " except RuntimeError as e:\n",
- " if \"out of memory\" in str(e):\n",
- " # Try smaller batch size\n",
- " max_possible_batch_size = batch_size - 1\n",
- "\n",
- " # Clean up\n",
- " try:\n",
- " del model, input_tensor\n",
- " torch.cuda.empty_cache()\n",
- " except NameError:\n",
- " pass\n",
- " else:\n",
- " raise e"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- " \n",
- "# Benchmark with automatic batch size finding and Model FLOP Utilization (MFU)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "- Model FLOPs Utilization (MFU) explanation from the [PaLM paper](https://arxiv.org/abs/2204.02311)\n",
- "\n",
- "> We propose a new metric for efficiency that is implementation-independent and permits a cleaner comparison of system efficiency, called model FLOPs utilization (MFU). This is the ratio of the observed throughput (tokens-per-second) relative to the theoretical maximum throughput of a system operating at peak FLOPs. Crucially, the “theoretical maximum” throughput only accounts for the required operations to compute the forward+backward passes, and not rematerialization.\n",
- "\n",
- "\n",
- "$$\\text{MFU} = \\frac{\\text{Observed Tokens per Second}}{\\text{Theoretical Max Tokens per Second}}$$\n",
- "\n",
- "where \n",
- "\n",
- "$$\\text{Theoretical Max Tokens per Second} = \\frac{\\text{Max FLOPs per Second}}{\\text{Total FLOPs per Token}}$$\n",
- "\n",
- "and\n",
- "\n",
- "$$\\text{Tokens per Second} = \\frac{\\text{Batch Size} \\times \\text{Sequence Length}}{\\text{Total Time}}$$"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Max flops per second provided by the GPU manufacturer\n",
- "\n",
- "flops_per_second = {\n",
- " \"H100\": {\n",
- " torch.float32: 60e12, # 60 TFLOPs for FP32 on NVIDIA H100\n",
- " torch.float16: 1.979e15, # 1979 TFLOPs for FP16 on NVIDIA H100\n",
- " torch.bfloat16: 1.979e15\n",
- " },\n",
- " \"L4\": {\n",
- " torch.float32: 15e12, # 15 TFLOPs for FP32 on NVIDIA L4\n",
- " torch.float16: 30e12, # 30 TFLOPs for FP16 on NVIDIA L4\n",
- " torch.bfloat16: 30e12 \n",
- " },\n",
- " \"T4\": {\n",
- " torch.float32: 8.1e12, # 8.1 TFLOPs for FP32 on NVIDIA T4\n",
- " torch.float16: 130e12, # 130 TFLOPs for FP16 on NVIDIA T4\n",
- " torch.bfloat16: 130e12\n",
- " },\n",
- " \"A10G\": {\n",
- " torch.float32: 15.6e12, # 15.6 TFLOPs for FP32 on NVIDIA A10G\n",
- " torch.float16: 78e12, # 78 TFLOPs for FP16 on NVIDIA A10G\n",
- " torch.bfloat16: 78e12\n",
- " },\n",
- " \"A100\": {\n",
- " torch.float32: 19.5e12, # 19.5 TFLOPs for FP32 on NVIDIA A100\n",
- " torch.float16: 1.248e15, # 1248 TFLOPs for FP16 on NVIDIA A100\n",
- " torch.bfloat16: 1.248e15\n",
- " },\n",
- " \"H200\": {\n",
- " torch.float32: 70e12, # 70 TFLOPs for FP32 on NVIDIA H200\n",
- " torch.float16: 1.2e15, # Assuming 1200 TFLOPs for FP16 on NVIDIA H200\n",
- " torch.bfloat16: 1.2e15\n",
- " },\n",
- " \"RTX_3080\": {\n",
- " torch.float32: 29.8e12, # 29.8 TFLOPs for FP32 on NVIDIA RTX 3080\n",
- " torch.float16: 59.6e12, # 59.6 TFLOPs for FP16 on NVIDIA RTX 3080\n",
- " torch.bfloat16: 59.6e12\n",
- " },\n",
- " \"RTX_3090\": {\n",
- " torch.float32: 35.6e12, # 35.6 TFLOPs for FP32 on NVIDIA RTX 3090\n",
- " torch.float16: 71.2e12, # 71.2 TFLOPs for FP16 on NVIDIA RTX 3090\n",
- " torch.bfloat16: 71.2e12\n",
- " },\n",
- " \"GTX_1080\": {\n",
- " torch.float32: 8.9e12, # 8.9 TFLOPs for FP32 on NVIDIA GTX 1080\n",
- " torch.float16: 8.9e12, # No dedicated FP16 performance; using FP32 value\n",
- " torch.bfloat16: 8.9e12\n",
- " },\n",
- " \"GTX_1080Ti\": {\n",
- " torch.float32: 11.3e12, # 11.3 TFLOPs for FP32 on NVIDIA GTX 1080Ti\n",
- " torch.float16: 11.3e12, # No dedicated FP16 performance; using FP32 value\n",
- " torch.bfloat16: 11.3e12\n",
- " },\n",
- " \"GTX_1660\": {\n",
- " torch.float32: 5e12, # 5 TFLOPs for FP32 on NVIDIA GTX 1660\n",
- " torch.float16: 5e12, # No dedicated FP16 performance; using FP32 value\n",
- " torch.bfloat16: 5e12\n",
- " },\n",
- " \"GTX_1660Ti\": {\n",
- " torch.float32: 5.5e12, # 5.5 TFLOPs for FP32 on NVIDIA GTX 1660Ti\n",
- " torch.float16: 5.5e12, # No dedicated FP16 performance; using FP32 value\n",
- " torch.bfloat16: 5.5e12\n",
- " }\n",
- "}\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xS2WjniMgzPB"
+ },
+ "source": [
+ "- FLOPs (Floating Point Operations Per Second) measure the computational complexity of neural network models by counting the number of floating-point operations executed\n",
+ "- High FLOPs indicate more intensive computation and energy consumption"
+ ]
+ },
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "GPU Model: L4\n",
- "\n",
- "Processing gpt-small (124M)\n",
- " Batch size 8: Tokens/sec: 14488.21, MFU: 0.3580\n",
- " Batch size 12: Tokens/sec: 15378.16, MFU: 0.3799\n",
- "\n",
- "Processing gpt-medium (355M)\n",
- " Batch size 2: Tokens/sec: 6493.81, MFU: 0.4591\n",
- " Batch size 3: Tokens/sec: 6328.82, MFU: 0.4474\n",
- "\n",
- "Processing gpt-large (774M)\n",
- " Batch size 4: Tokens/sec: 3130.38, MFU: 0.4834\n",
- "\n",
- "Processing gpt-xl (1558M)\n",
- " Batch size 2: Tokens/sec: 1896.17, MFU: 0.5897\n"
- ]
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "L01-NzkggzPB"
+ },
+ "outputs": [],
+ "source": [
+ "# pip install -r requirements-extra.txt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "ObzfVatqgzPC",
+ "outputId": "3ead6a41-ac38-4db1-9fc3-012fb3ad18cd"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "thop version: 0.1.1-2209072238\n",
+ "torch version: 2.4.1+cu121\n"
+ ]
+ }
+ ],
+ "source": [
+ "from importlib.metadata import version\n",
+ "\n",
+ "pkgs = [\n",
+ " \"thop\",\n",
+ " \"torch\",\n",
+ "]\n",
+ "for p in pkgs:\n",
+ " print(f\"{p} version: {version(p)}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "74UpjSLjgzPC"
+ },
+ "source": [
+ " \n",
+ "# Simple benchmark with fixed batch size"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "90pnCK39gzPD"
+ },
+ "source": [
+ "- forward pass only"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "GerIdRMXd6g9",
+ "outputId": "177c6d00-a817-40fe-badd-95cfa8ac9b51"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "gpt-small (124M) : 5.1e+11 FLOPS\n",
+ "gpt-medium (355M) : 1.4e+12 FLOPS\n",
+ "gpt-large (774M) : 3.2e+12 FLOPS\n",
+ "gpt-xl (1558M) : 6.4e+12 FLOPS\n"
+ ]
+ }
+ ],
+ "source": [
+ "import torch\n",
+ "from thop import profile\n",
+ "\n",
+ "from previous_chapters import GPTModel\n",
+ "\n",
+ "\n",
+ "BASE_CONFIG = {\n",
+ " \"vocab_size\": 50257, # Vocabulary size\n",
+ " \"context_length\": 1024, # Context length\n",
+ " \"drop_rate\": 0.0, # Dropout rate\n",
+ " \"qkv_bias\": True # Query-key-value bias\n",
+ "}\n",
+ "\n",
+ "model_configs = {\n",
+ " \"gpt-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
+ " \"gpt-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
+ " \"gpt-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
+ " \"gpt-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
+ "}\n",
+ "\n",
+ "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
+ "batch_size = 2\n",
+ "input_tensor = torch.randint(0, 50257, (batch_size, 1024)).to(device)\n",
+ "\n",
+ "for size in model_configs:\n",
+ " BASE_CONFIG.update(model_configs[size])\n",
+ "\n",
+ " model = GPTModel(BASE_CONFIG).bfloat16()\n",
+ " model.to(device)\n",
+ "\n",
+ " # MACS = multiply-accumulate operations\n",
+ " # MACS are typically counted as two FLOPS (one multiply and one accumulate)\n",
+ " macs, params = profile(model, inputs=(input_tensor,), verbose=False)\n",
+ " flops = 2*macs\n",
+ " print(f\"{size:18}: {flops:.1e} FLOPS\")\n",
+ "\n",
+ " del model\n",
+ " torch.cuda.empty_cache()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "_S6V05QmgzPD"
+ },
+ "source": [
+ " \n",
+ "# Simple benchmark with automatic batch size finding"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "amw4E983gzPD"
+ },
+ "source": [
+ "- forward pass only"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "h08VOiqpgzPE",
+ "outputId": "a6a90ef8-28fb-4b55-9268-6915b0c84c51"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Processing gpt-small (124M)\n",
+ " Batch size 256: 6.5e+13 FLOPS\n",
+ " Batch size 384: 9.7e+13 FLOPS\n",
+ " Batch size 388: 9.8e+13 FLOPS\n",
+ " Batch size 389: 9.8e+13 FLOPS\n",
+ "\n",
+ "Processing gpt-medium (355M)\n",
+ " Batch size 256: 1.9e+14 FLOPS\n",
+ " Batch size 260: 1.9e+14 FLOPS\n",
+ " Batch size 262: 1.9e+14 FLOPS\n",
+ " Batch size 263: 1.9e+14 FLOPS\n",
+ "\n",
+ "Processing gpt-large (774M)\n",
+ " Batch size 256: 4.0e+14 FLOPS\n",
+ "\n",
+ "Processing gpt-xl (1558M)\n",
+ " Batch size 128: 4.1e+14 FLOPS\n",
+ " Batch size 136: 4.3e+14 FLOPS\n",
+ " Batch size 140: 4.5e+14 FLOPS\n",
+ " Batch size 142: 4.5e+14 FLOPS\n",
+ " Batch size 143: 4.6e+14 FLOPS\n"
+ ]
+ }
+ ],
+ "source": [
+ "for size in model_configs:\n",
+ " print(f\"\\nProcessing {size}\")\n",
+ " config = BASE_CONFIG.copy()\n",
+ " config.update(model_configs[size])\n",
+ "\n",
+ " min_batch_size = 1\n",
+ " max_batch_size = None\n",
+ " max_possible_batch_size = 4096\n",
+ "\n",
+ " while min_batch_size <= max_possible_batch_size:\n",
+ " batch_size = (min_batch_size + max_possible_batch_size) // 2\n",
+ " try:\n",
+ " input_tensor = torch.randint(\n",
+ " 0, config[\"vocab_size\"],\n",
+ " (batch_size, config[\"context_length\"]),\n",
+ " device=device\n",
+ " )\n",
+ "\n",
+ " model = GPTModel(config).bfloat16().to(device)\n",
+ "\n",
+ " # MACS = multiply-accumulate operations\n",
+ " # MACS are typically counted as two FLOPS (one multiply and one accumulate)\n",
+ " macs, params = profile(model, inputs=(input_tensor,), verbose=False)\n",
+ " flops = 2 * macs\n",
+ " print(f\" Batch size {batch_size}: {flops:.1e} FLOPS\")\n",
+ "\n",
+ " # If successful, try a larger batch size\n",
+ " min_batch_size = batch_size + 1\n",
+ " max_batch_size = batch_size\n",
+ "\n",
+ " # Clean up\n",
+ " del model, input_tensor\n",
+ " torch.cuda.empty_cache()\n",
+ "\n",
+ " except RuntimeError as e:\n",
+ " if \"out of memory\" in str(e):\n",
+ " # Try smaller batch size\n",
+ " max_possible_batch_size = batch_size - 1\n",
+ "\n",
+ " # Clean up\n",
+ " try:\n",
+ " del model, input_tensor\n",
+ " torch.cuda.empty_cache()\n",
+ " except NameError:\n",
+ " pass\n",
+ " else:\n",
+ " raise e"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "V4lD7tfcgzPE"
+ },
+ "source": [
+ " \n",
+ "# Benchmark with automatic batch size finding and Model FLOP Utilization (MFU)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "70Y2mblVgzPE"
+ },
+ "source": [
+ "- Model FLOPs Utilization (MFU) explanation from the [PaLM paper](https://arxiv.org/abs/2204.02311)\n",
+ "\n",
+ "> We propose a new metric for efficiency that is implementation-independent and permits a cleaner comparison of system efficiency, called model FLOPs utilization (MFU). This is the ratio of the observed throughput (tokens-per-second) relative to the theoretical maximum throughput of a system operating at peak FLOPs. Crucially, the “theoretical maximum” throughput only accounts for the required operations to compute the forward+backward passes, and not rematerialization.\n",
+ "\n",
+ "\n",
+ "$$\\text{MFU} = \\frac{\\text{Observed Tokens per Second}}{\\text{Theoretical Max Tokens per Second}}$$\n",
+ "\n",
+ "where\n",
+ "\n",
+ "$$\\text{Theoretical Max Tokens per Second} = \\frac{\\text{Max FLOPs per Second}}{\\text{Total FLOPs per Token}}$$\n",
+ "\n",
+ "and\n",
+ "\n",
+ "$$\\text{Tokens per Second} = \\frac{\\text{Batch Size} \\times \\text{Sequence Length}}{\\text{Total Time}}$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "TKttjC8xgzPF"
+ },
+ "source": [
+ "- forward and backward pass"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "6aO4rjtNgzPF"
+ },
+ "outputs": [],
+ "source": [
+ "# Theoretical max flops per second provided by the GPU manufacturer\n",
+ "\n",
+ "flops_per_second = {\n",
+ " # https://www.techpowerup.com/gpu-specs/h100-pcie-80-gb.c3899\n",
+ " \"H100\": {\n",
+ " torch.float32: 51.22e12, # 51.22 TFLOPs for FP32 on NVIDIA H100\n",
+ " torch.float16: 204.9e12, # 204.9 TFLOPs for FP16 on NVIDIA H100\n",
+ " torch.bfloat16: 204.9e12\n",
+ " },\n",
+ " # https://www.techpowerup.com/gpu-specs/l4.c4091\n",
+ " \"L4\": {\n",
+ " torch.float32: 30.29e12, # 30.29 TFLOPs for FP32 on NVIDIA L4\n",
+ " torch.float16: 30.29e12, # 30.29 TFLOPs for FP16 on NVIDIA L4\n",
+ " torch.bfloat16: 30.29e12\n",
+ " },\n",
+ " # https://www.techpowerup.com/gpu-specs/tesla-t4.c3316\n",
+ " \"T4\": {\n",
+ " torch.float32: 8.1e12, # 8.1 TFLOPs for FP32 on NVIDIA T4\n",
+ " torch.float16: 65.13e12, # 65.13 TFLOPs for FP16 on NVIDIA T4\n",
+ " torch.bfloat16: 65.13e12\n",
+ " },\n",
+ " # https://www.techpowerup.com/gpu-specs/a10g.c3798\n",
+ " \"A10G\": {\n",
+ " torch.float32: 31.52e12, # 31.52 TFLOPs for FP32 on NVIDIA A10G\n",
+ " torch.float16: 31.52e12, # 31.52 TFLOPs for FP16 on NVIDIA A10G\n",
+ " torch.bfloat16: 31.52e12\n",
+ " },\n",
+ " # https://www.techpowerup.com/gpu-specs/a100-pcie-40-gb.c3623\n",
+ " \"A100\": {\n",
+ " torch.float32: 19.49e12, # 19.49 TFLOPs for FP32 on NVIDIA A100\n",
+ " torch.float16: 77.97e12, # 77.97 TFLOPs for FP16 on NVIDIA A100\n",
+ " torch.bfloat16: 77.97e12\n",
+ " },\n",
+ " # https://www.techpowerup.com/gpu-specs/geforce-rtx-3080.c3621\n",
+ " \"RTX_3080\": {\n",
+ " torch.float32: 29.77e12, # 29.77 TFLOPs for FP32 on NVIDIA RTX 3080\n",
+ " torch.float16: 29.77e12, # 29.77 TFLOPs for FP16 on NVIDIA RTX 3080\n",
+ " torch.bfloat16: 29.77e12\n",
+ " },\n",
+ " # https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622\n",
+ " \"RTX_3090\": {\n",
+ " torch.float32: 35.58e12, # 35.58 TFLOPs for FP32 on NVIDIA RTX 3090\n",
+ " torch.float16: 35.58e12, # 35.58 TFLOPs for FP16 on NVIDIA RTX 3090\n",
+ " torch.bfloat16: 35.58e12\n",
+ " }\n",
+ "}\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "background_save": true,
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "HW5qWfE7gzPF",
+ "outputId": "bb1663bc-ee66-44f1-f54d-0bb66ee0d0c2"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "GPU Model: A100\n",
+ "\n",
+ "Processing gpt-small (124M)\n",
+ " Batch size 16: Tokens/sec: 34248.82, MFU: 0.3256\n",
+ " Batch size 24: Tokens/sec: 62568.34, MFU: 0.5948\n",
+ "\n",
+ "Processing gpt-medium (355M)\n",
+ " Batch size 4: Tokens/sec: 20159.93, MFU: 0.5483\n",
+ " Batch size 6: Tokens/sec: 21717.66, MFU: 0.5907\n",
+ " Batch size 7: Tokens/sec: 22536.25, MFU: 0.6130\n",
+ "\n",
+ "Processing gpt-large (774M)\n",
+ " Batch size 8: Tokens/sec: 12465.21, MFU: 0.7406\n",
+ "\n",
+ "Processing gpt-xl (1558M)\n",
+ " Batch size 4: Tokens/sec: 6779.92, MFU: 0.8113\n"
+ ]
+ }
+ ],
+ "source": [
+ "import time\n",
+ "\n",
+ "def get_gpu_model(flops_per_second_dict):\n",
+ " device_name = torch.cuda.get_device_name(0)\n",
+ " for model in flops_per_second_dict.keys():\n",
+ " if model in device_name:\n",
+ " return model\n",
+ " return \"Unknown\" # Default if no matching model is found\n",
+ "\n",
+ "\n",
+ "gpu_model = get_gpu_model(flops_per_second)\n",
+ "print(\"GPU Model:\", gpu_model)\n",
+ "\n",
+ "if gpu_model != \"Unknown\":\n",
+ "\n",
+ " for size in model_configs:\n",
+ " print(f\"\\nProcessing {size}\")\n",
+ " config = BASE_CONFIG.copy()\n",
+ " config.update(model_configs[size])\n",
+ "\n",
+ " min_batch_size = 1\n",
+ " max_batch_size = None\n",
+ " max_possible_batch_size = 4096\n",
+ "\n",
+ " while min_batch_size <= max_possible_batch_size:\n",
+ " batch_size = (min_batch_size + max_possible_batch_size) // 2\n",
+ " try:\n",
+ " input_tensor = torch.randint(\n",
+ " 0, config[\"vocab_size\"],\n",
+ " (batch_size, config[\"context_length\"]),\n",
+ " device=device\n",
+ " )\n",
+ "\n",
+ " model = GPTModel(config).bfloat16().to(device)\n",
+ " model.train()\n",
+ "\n",
+ " # Start timing\n",
+ " torch.cuda.synchronize()\n",
+ " start_time = time.time()\n",
+ "\n",
+ " # Forward & backward pass\n",
+ " output = model(input_tensor)\n",
+ " loss = output.sum() # Compute a dummy loss\n",
+ " loss.backward()\n",
+ "\n",
+ " # End timing\n",
+ " torch.cuda.synchronize()\n",
+ " end_time = time.time()\n",
+ "\n",
+ " total_time_seconds = end_time - start_time\n",
+ "\n",
+ " # Calculate FLOPs for forward pass\n",
+ " macs, params = profile(model, inputs=(input_tensor,), verbose=False)\n",
+ " flops_forward = 2 * macs # Assuming one MAC equals two FLOPs\n",
+ "\n",
+ " # Estimate FLOPs for backward pass (typically 2x forward FLOPs)\n",
+ " flops_backward = 2 * flops_forward\n",
+ "\n",
+ " # Total FLOPs for forward + backward passes\n",
+ " total_flops = flops_forward + flops_backward # Or total_flops = flops_forward * 3\n",
+ "\n",
+ " data_type = next(model.parameters()).dtype\n",
+ " max_flops_per_second = flops_per_second[gpu_model].get(data_type, 0)\n",
+ "\n",
+ " # Compute tokens per second\n",
+ " tokens_processed = batch_size * config[\"context_length\"]\n",
+ " tokens_per_second = tokens_processed / total_time_seconds\n",
+ "\n",
+ " # Compute FLOPs per token\n",
+ " flops_per_token = total_flops / tokens_processed\n",
+ "\n",
+ " # Compute theoretical max tokens per second\n",
+ " if flops_per_token > 0:\n",
+ " theoretical_max_tokens_per_second = max_flops_per_second / flops_per_token\n",
+ " else:\n",
+ " theoretical_max_tokens_per_second = 0 # Avoid division by zero\n",
+ "\n",
+ " # Compute MFU\n",
+ " if theoretical_max_tokens_per_second > 0:\n",
+ " mfu = tokens_per_second / theoretical_max_tokens_per_second\n",
+ " else:\n",
+ " mfu = 0 # Avoid division by zero\n",
+ "\n",
+ " print(f\" Batch size {batch_size}: Tokens/sec: {tokens_per_second:.2f}, MFU: {mfu:.4f}\")\n",
+ "\n",
+ " # If successful, try a larger batch size\n",
+ " min_batch_size = batch_size + 1\n",
+ " max_batch_size = batch_size\n",
+ "\n",
+ " # Clean up\n",
+ " del model, input_tensor, output, loss\n",
+ " torch.cuda.empty_cache()\n",
+ "\n",
+ " except RuntimeError as e:\n",
+ " if \"out of memory\" in str(e).lower():\n",
+ " # Try smaller batch size\n",
+ " max_possible_batch_size = batch_size - 1\n",
+ "\n",
+ " # Clean up\n",
+ " try:\n",
+ " del model, input_tensor\n",
+ " torch.cuda.empty_cache()\n",
+ " except NameError:\n",
+ " pass\n",
+ " else:\n",
+ " raise e\n",
+ "\n",
+ "else:\n",
+ " print(\"Unknown GPU model. Please update the flops_per_second dictionary with your GPU information.\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "LovmswRigzPG"
+ },
+ "source": [
+ "- a value of 1.0 is best (equal to 100%)\n",
+ "- Note that the batch sizes are smaller than previously because we also carry out the backward pass here, which is more memory-intensive"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "A100",
+ "machine_shape": "hm",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.4"
}
- ],
- "source": [
- "import time\n",
- "\n",
- "def get_gpu_model(flops_per_second_dict):\n",
- " device_name = torch.cuda.get_device_name(0)\n",
- " for model in flops_per_second_dict.keys():\n",
- " if model in device_name:\n",
- " return model\n",
- " return \"Unknown\" # Default if no matching model is found\n",
- "\n",
- "\n",
- "gpu_model = get_gpu_model(flops_per_second)\n",
- "print(\"GPU Model:\", gpu_model)\n",
- "\n",
- "if gpu_model != \"Unknown\":\n",
- "\n",
- " for size in model_configs:\n",
- " print(f\"\\nProcessing {size}\")\n",
- " config = BASE_CONFIG.copy()\n",
- " config.update(model_configs[size])\n",
- "\n",
- " min_batch_size = 1\n",
- " max_batch_size = None\n",
- " max_possible_batch_size = 4096\n",
- "\n",
- " while min_batch_size <= max_possible_batch_size:\n",
- " batch_size = (min_batch_size + max_possible_batch_size) // 2\n",
- " try:\n",
- " input_tensor = torch.randint(\n",
- " 0, config[\"vocab_size\"],\n",
- " (batch_size, config[\"context_length\"]),\n",
- " device=device\n",
- " )\n",
- "\n",
- " model = GPTModel(config).bfloat16().to(device)\n",
- " model.train()\n",
- "\n",
- " # Start timing\n",
- " torch.cuda.synchronize()\n",
- " start_time = time.time()\n",
- "\n",
- " # Forward & backward pass\n",
- " output = model(input_tensor)\n",
- " loss = output.sum() # Compute a dummy loss \n",
- " loss.backward()\n",
- "\n",
- " # End timing\n",
- " torch.cuda.synchronize()\n",
- " end_time = time.time()\n",
- "\n",
- " total_time_seconds = end_time - start_time\n",
- "\n",
- " # Calculate FLOPs for forward pass\n",
- " macs, params = profile(model, inputs=(input_tensor,), verbose=False)\n",
- " flops_forward = 2 * macs # Assuming one MAC equals two FLOPs\n",
- "\n",
- " # Estimate FLOPs for backward pass (typically 2x forward FLOPs)\n",
- " flops_backward = 2 * flops_forward\n",
- "\n",
- " # Total FLOPs for forward + backward passes\n",
- " total_flops = flops_forward + flops_backward # Or total_flops = flops_forward * 3\n",
- "\n",
- " data_type = next(model.parameters()).dtype\n",
- " max_flops_per_second = flops_per_second[gpu_model].get(data_type, 0)\n",
- "\n",
- " # Compute tokens per second\n",
- " tokens_processed = batch_size * config[\"context_length\"]\n",
- " tokens_per_second = tokens_processed / total_time_seconds\n",
- "\n",
- " # Compute FLOPs per token\n",
- " flops_per_token = total_flops / tokens_processed\n",
- "\n",
- " # Compute theoretical max tokens per second\n",
- " if flops_per_token > 0:\n",
- " theoretical_max_tokens_per_second = max_flops_per_second / flops_per_token\n",
- " else:\n",
- " theoretical_max_tokens_per_second = 0 # Avoid division by zero\n",
- "\n",
- " # Compute MFU\n",
- " if theoretical_max_tokens_per_second > 0:\n",
- " mfu = tokens_per_second / theoretical_max_tokens_per_second\n",
- " else:\n",
- " mfu = 0 # Avoid division by zero\n",
- "\n",
- " print(f\" Batch size {batch_size}: Tokens/sec: {tokens_per_second:.2f}, MFU: {mfu:.4f}\")\n",
- "\n",
- " # If successful, try a larger batch size\n",
- " min_batch_size = batch_size + 1\n",
- " max_batch_size = batch_size\n",
- "\n",
- " # Clean up\n",
- " del model, input_tensor, output, loss\n",
- " torch.cuda.empty_cache()\n",
- "\n",
- " except RuntimeError as e:\n",
- " if \"out of memory\" in str(e).lower():\n",
- " # Try smaller batch size\n",
- " max_possible_batch_size = batch_size - 1\n",
- "\n",
- " # Clean up\n",
- " try:\n",
- " del model, input_tensor\n",
- " torch.cuda.empty_cache()\n",
- " except NameError:\n",
- " pass\n",
- " else:\n",
- " raise e\n",
- "\n",
- "else:\n",
- " print(\"Unknown GPU model. Please update the flops_per_second dictionary with your GPU information.\")"
- ]
},
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "- Note that the batch sizes are smaller than previously because we also carry out the backward pass here, which is more memory-intensive"
- ]
- }
- ],
- "metadata": {
- "accelerator": "GPU",
- "colab": {
- "gpuType": "A100",
- "machine_shape": "hm",
- "provenance": []
- },
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.11.4"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file