diff --git a/ch07/01_main-chapter-code/README.md b/ch07/01_main-chapter-code/README.md
index 6e88af7..c84be1c 100644
--- a/ch07/01_main-chapter-code/README.md
+++ b/ch07/01_main-chapter-code/README.md
@@ -8,4 +8,4 @@
### Optional Code
-In progress ...
\ No newline at end of file
+- [load-finetuned-model.ipynb](load-finetuned-model.ipynb) is a standalone Jupyter notebook to load the instruction finetuned model we created in this chapter
\ No newline at end of file
diff --git a/ch07/01_main-chapter-code/load-finetuned-model.ipynb b/ch07/01_main-chapter-code/load-finetuned-model.ipynb
new file mode 100644
index 0000000..95d463e
--- /dev/null
+++ b/ch07/01_main-chapter-code/load-finetuned-model.ipynb
@@ -0,0 +1,216 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "1545a16b-bc8d-4e49-b9a6-db6631e7483d",
+ "metadata": {},
+ "source": [
+ "
\n",
+ "\n",
+ "\n",
+ "\n",
+ "Supplementary code for the Build a Large Language Model From Scratch book by Sebastian Raschka \n",
+ " Code repository: https://github.com/rasbt/LLMs-from-scratch\n",
+ "\n",
+ " | \n",
+ "\n",
+ " \n",
+ " | \n",
+ "
\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f3f83194-82b9-4478-9550-5ad793467bd0",
+ "metadata": {},
+ "source": [
+ "# Load And Use Finetuned Model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "466b564e-4fd5-4d76-a3a1-63f9f0993b7e",
+ "metadata": {},
+ "source": [
+ "This notebook contains minimal code to load the finetuned model that was instruction finetuned and saved in chapter 7 via [ch07.ipynb](ch07.ipynb)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "fd80e5f5-0f79-4a6c-bf31-2026e7d30e52",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "tiktoken version: 0.7.0\n",
+ "torch version: 2.3.1\n"
+ ]
+ }
+ ],
+ "source": [
+ "from importlib.metadata import version\n",
+ "\n",
+ "pkgs = [\n",
+ " \"tiktoken\", # Tokenizer\n",
+ " \"torch\", # Deep learning library\n",
+ "]\n",
+ "for p in pkgs:\n",
+ " print(f\"{p} version: {version(p)}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "ed86d6b7-f32d-4601-b585-a2ea3dbf7201",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pathlib import Path\n",
+ "\n",
+ "finetuned_model_path = Path(\"gpt2-medium355M-sft.pth\")\n",
+ "if not finetuned_model_path.exists():\n",
+ " print(\n",
+ " f\"Could not find '{finetuned_model_path}'.\\n\"\n",
+ " \"Run the `ch07.ipynb` notebook to finetune and save finetuned model.\"\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "fb02584a-5e31-45d5-8377-794876907bc6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from gpt_download import download_and_load_gpt2\n",
+ "from previous_chapters import GPTModel, load_weights_into_gpt\n",
+ "\n",
+ "\n",
+ "BASE_CONFIG = {\n",
+ " \"vocab_size\": 50257, # Vocabulary size\n",
+ " \"context_length\": 1024, # Context length\n",
+ " \"drop_rate\": 0.0, # Dropout rate\n",
+ " \"qkv_bias\": True # Query-key-value bias\n",
+ "}\n",
+ "\n",
+ "model_configs = {\n",
+ " \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
+ " \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
+ " \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
+ " \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
+ "}\n",
+ "\n",
+ "CHOOSE_MODEL = \"gpt2-medium (355M)\"\n",
+ "\n",
+ "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])\n",
+ "\n",
+ "model_size = CHOOSE_MODEL.split(\" \")[-1].lstrip(\"(\").rstrip(\")\")\n",
+ "model = GPTModel(BASE_CONFIG)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "f1ccf2b7-176e-4cfd-af7a-53fb76010b94",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "\n",
+ "model.load_state_dict(torch.load(\"gpt2-medium355M-sft.pth\", map_location=torch.device(\"cpu\")))\n",
+ "model.eval();"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "a1fd174e-9555-46c5-8780-19b0aa4f26e5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import tiktoken\n",
+ "\n",
+ "tokenizer = tiktoken.get_encoding(\"gpt2\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "2a4c0129-efe5-46e9-bb90-ba08d407c1a2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "prompt = \"\"\"Below is an instruction that describes a task. Write a response \n",
+ "that appropriately completes the request.\n",
+ "\n",
+ "### Instruction:\n",
+ "Convert the active sentence to passive: 'The chef cooks the meal every day.'\n",
+ "\"\"\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "1e26862c-10b5-4a0f-9dd6-b6ddbad2fc3f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The meal is cooked every day by the chef.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from previous_chapters import (\n",
+ " generate,\n",
+ " text_to_token_ids,\n",
+ " token_ids_to_text\n",
+ ")\n",
+ "\n",
+ "def extract_response(response_text, input_text):\n",
+ " return response_text[len(input_text):].replace(\"### Response:\", \"\").strip()\n",
+ "\n",
+ "torch.manual_seed(123)\n",
+ "\n",
+ "token_ids = generate(\n",
+ " model=model,\n",
+ " idx=text_to_token_ids(prompt, tokenizer),\n",
+ " max_new_tokens=35,\n",
+ " context_size=BASE_CONFIG[\"context_length\"],\n",
+ " eos_id=50256\n",
+ ")\n",
+ "\n",
+ "response = token_ids_to_text(token_ids, tokenizer)\n",
+ "response = extract_response(response, prompt)\n",
+ "print(response)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}